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Foreword 
 

VALENTIN TURCHIN presents in The Phenomenon of Science an evolutionary 
scheme of the universe--one that begins on the level of individual atoms and 
molecules, continues through the origin of life and the development of plants and 
animals, reaches the level of man and self-consciousness, and develops further in the 
intellectual creations of man, particularly in scientific knowledge. He does not see this 
development as a purposeful or preordained one, since he accepts entirely the 
Darwinian law of trial and error. Selection occurs within a set of random variations, 
and survival of forms is a happenstance of the relationship between particular forms 
and particular environments. Thus, there are no goals in evolution. Nonetheless, there 
are discernible patterns and, indeed, there is a ''law of evolution" by which one can 
explain the emergence of forms capable of activities which are truly novel. This law is 
one of the formation of higher and higher levels of cybernetic control. The nodal 
points of evolution for Turchin are the moments when the most recent and highest 
controlling subsystem of a large system is integrated into a metasystem and brought 
under a yet higher form of control. Examples of such transitions are the origin of life, 
the emergence of individual selfconsciousness, the appearance of language, and the 
development of the scientific method.  
 
Many authors in the last century have attempted to sketch schemes of cosmic 
evolution, and Turchin's version will evoke memories in the minds of his readers. The 
names of Spencer, Haeckel, Huxley, Engels, Morgan, Bergson, Teilhard de Chardin, 
Vernadsky, Bogdanov, Oparin, Wiener and many others serve as labels for concepts 
similar to some of those discussed by Turchin. Furthermore, it is clear that Turchin 
knows many of these authors, borrows from some of them, and cites them for their 
achievements. It is probably not an accident that the title of Turchin's book, ''The 
Phenomenon of Science,'' closely parallels the title of Teilhard's, ''The Phenomenon of 
Man.'' Yet it is equally clear that Turchin does not agree entirely with any of these 
authors, and his debts to them are fragmentary and selective. Many of them assigned a  
place either to vitalistic or to theological elements in their evolutionary schemes, both 
of which Turchin rejects. Others relied heavily on mechanistic, reductionist principles 
which left no room for the qualitatively new levels of biological and social orders that 
are so important to Turchin. And all of them--with the possible exception of Wiener, 
who left no comprehensive analysis of evolution--wrote at a time when it was 
impossible to incorporate information theory into their accounts.  
 
The two aspects of Turchin's scheme of cosmic evolution which distinguish it from its 
well-known predecessors are its heavy reliance on cybernetics and its inclusion of the 
development of scientific thought in evolutionary development that begins with the 
inorganic world. The first aspect is one which is intimately tied to Turchin's own field 
of specialization, since for many years he was a leader in the theory and design of 
Soviet computer systems and is the author of a system of computer language. Turchin 
believes that he gained insights from this experience that lead to a much more rigorous 
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discussion of evolution than those of his predecessors. The second aspect of Turchin's 
account--the treatment of scientific concepts as ''objects'' governed by the same 
evolutionary regularities as chemical and biological entities--is likely to raise 
objections among some readers. Although this approach is also not entirely original--
one thinks of some of the writings of Stephen Toulmin, for example--I know of no 
other author who has attempted to integrate science so thoroughly into a scheme of the 
evolution of physical and biological nature. Taking a thoroughly cybernetic view, 
Turchin maintains that it is not the ''substance'' of the entities being described that 
matters, but their principles of organization.  
 
For the person seeking to analyze the essential characteristics of Turchin's system of 
explanation, two of his terms will attract attention: ''representation'' and ''metasystem 
transition.'' Without a clear understanding of what he means by these terms, one 
cannot comprehend the overall developmental picture he presents. A central issue for 
critics will be whether a clear understanding of these terms can be gained from the 
material presented here. One of the most difficult tasks for Mr. Frentz, the translator, 
was connected with one of these central terms. This problem of finding an English 
word for the Russian term predstavlenie was eventually resolved by using the term 
''representation.'' In my opinion, the difficulty for the translator was not simply a 
linguistic one, but involved a fundamental, unresolved philosophical issue. The term 
predstavlenie is used by Turchin to mean ''an image or a representation of a part of 
reality.'' It plays a crucial role in describing the situations in which an organism 
compares a given circumstance with one that is optimal from the standpoint of its 
survival. Thus, Turchin, after introducing this term, speaks of a hypothetical animal 
that ''loves a temperature of 16 degrees Centigrade'' and has a representation of this 
wonderful situation in the form of the frequency of impulses of neurons. The animal, 
therefore, attempts to bring the given circumstances closer and closer into 
correspondence with its neuronal representation by moving about in water of different 
temperatures. This same term predstavlenie is also used to describe human behavior 
where the term ''mental image'' would seem to be a more felicitous translation. If we 
look in a good Russian-English dictionary, we shall find predstavlenie defined as 
''presentation, idea, notion, representation.'' At first Dr. Turchin, who knows English 
well and was consulted by the translator, preferred the translation "notion." Yet it 
seemed rather odd, even vaguely anthropomorphic, to attribute a ''notion'' to a 
primitive organism, an amoeba, or even a fish. On the other hand, the term 
''representation'' seemed too rudimentary for human behavior where ''idea'' or ''mental 
image" was clearly preferable. This difficulty arose from the effort to carry a constant 
term through evolutionary stages in which Turchin sees the emergence of qualitatively 
new properties. The problem is, therefore, only secondarily one of language. The basic 
issue is the familiar one of reductionism and nonreductionism in descriptions of 
biological and psychological phenomena. Since the Russian language happens to 
possess a term that fits these different stages better than English, we might do better to  
retain the Russian predstavlenie. In this text for a wide circle of English readers, 
however, the translator chose the word ''representation,'' probably the best that can be 
done. The difficulties of understanding the term ''metasystem transition'' arise from its 
inclusion of a particular interpretation of logical attributes and relations. Turchin 
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believes that it is impossible to describe the process by which a particular system 
develops into a metasystem in the terms of classical logic. Classical logic, he says, 
describes only attributes, not relations. For an adequate description of relations, one 
must rely on the Hegelian dialectic, which permits one to see that the whole of a 
metasystem is greater than the sum of its subsystems. The Hegelian concept of 
quantitative change leading to qualitative change is thus not only explicitly contained 
within Turchin's scheme, but plays an essential role in it. The behavior of human 
society is qualitatively different from the behavior of individual humans. And social 
integration, through the ''law of branching growth of the penultimate level,'' may lead 
eventually to a concept of ''The Super-Being.'' These concepts show some affinities to 
Marxist dialectical materialism, in which a similar differentiation of qualitatively 
distinct evolutionary levels has long been a characteristic feature. The British scientist 
J. D. Bernal once went so far as to claim that this concept of dialectical levels of 
natural laws was uniquely Marxist, when he wrote about ''the truth of different laws 
for different levels, an essentially Marxist idea.'' However, many non-Marxists have 
also advanced such a view of irreducible levels of laws; one should therefore be 
careful about terming a system of thought Marxist simply because it possesses this 
feature. Most Marxists would reject, at a minimum, Turchin's discussion of the 
concept of the Super-Being (although even in early Soviet Marxism ''God-building'' 
had a subrosa tradition). In Turchin's case we are probably justified in linking the 
inclusion of Hegelian concepts in his interpretation of nature to the education in 
philosophy he received in the Soviet Union. Soviet Marxism was probably one of 
several sources of Turchin's philosophic views; others are cybernetics and the thought 
of such earlier writers on cosmic evolution as Chardin and Vernadsky.  
 
In view of the links one can see between the ideas of Turchin and Marxism, it is 
particularly interesting to notice that Turchin is now in political difficulty in the Soviet 
Union. Before I give some of the details of his political biography, however, I shall 
note that in this essentially nonpolitical manuscript Turchin gives a few hints of 
possible social implications of his interpretation. He remarks that the cybernetic view 
he is presenting places great emphasis on ''control'' and that it draws an analogy 
between society and a multicellular organism. He then observes, ''This point of view 
conceals in itself a great danger that in vulgarized form it can easily lead to the 
conception of a fascist-type totalitarian state.'' This possibility of a totalitarian state, of 
whatever type, is clearly repugnant to Turchin, and his personal experience is a 
witness that he is willing to risk his own security in order to struggle against such 
state. As for his interpretation of social evolution, he contends that ''the possibility that 
a theory can be vulgarized is in no way an argument against its truth.'' In the last 
sections of his book he presents suggestions for avoiding such vulgarizations while 
still working for greater social integration.  
 
Turchin is wrestling in this last part of his interpretation with a problem that has 
recently plagued many thinkers in Western Europe and America as well: Can one 
combine a scientific explanation of man and society with a commitment to individual 
freedom and social justice? Turchin is convinced that such combination of goals is 
possible; indeed, he sees this alliance as imperative, since he believes there is no 
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conceptual alternative to the scientific worldview and no ethical alternative to the 
maintenance of individual freedom. It is the steadfastness of his support of science that 
will seem surprising to some of his readers in the West, where science is often seen as 
only a partial worldview, one to be supplemented with religious or nonscientific 
ethical or esthetic principles. Turchin, however, believes that humans can be explained 
within an entirely naturalistic framework. His belief that ethical and altruistic modes 
of behavior can emerge from an evolutionary scheme is, therefore, one that brings him 
in contact with recent writers in the West on sociobiology, physical anthropology, and 
evolutionary behavior. His emphases on information theory, on irreducible levels, and 
on the dangers of vulgarizations of scientific explanations of human behavior while 
nonetheless remaining loyal to science may make contributions to these already 
interesting discussions.  

 
Valentin Fedorovich Turchin, born in 1931, holds a doctor's degree in the physical and 
mathematical sciences. He worked in the Soviet science center in Obninsk, near 
Moscow, in the Physics and Energetics Institute and then later became a senior 
scientific researcher in the Institute of Applied Mathematics of the Academy of 
Sciences of the USSR. In this institute he specialized in information theory and the 
computer sciences. While working in these fields he developed a new computer 
language that was widely applied in the USSR, the ''Refal'' system. After 1973 he was 
the director of a laboratory in the Central Scientific-Research Institute for the Design 
of Automated Construction Systems.  During his years of professional employment 
Dr. Turchin published over 65 works in his field. In sum, in the 1960s and early 
1970s, Valentin Turchin was considered one of the leading computer specialists in the 
Soviet Union. Dr. Turchin's political difficulties began in 1968, when he was one of 
hundreds of scientists and other liberal intellectuals who signed letters protesting the 
crackdown on dissidents in the Soviet Union preceding and accompanying the Soviet-
led invasion of Czechoslovakia. In the same year he wrote an article entitled "The 
Inertia of Fear'' which circulated widely in samizdat, the system of underground 
transmission of manuscripts in the Soviet Union. Later the same article was expanded 
into a book-length manuscript in which Dr. Turchin criticized the vestiges of Stalinism 
in Soviet society and called for democratic reform.  
 
In September 1973 Dr. Turchin was one of the few people in the Soviet Union who 
came to the defense of the prominent Soviet physicist Andrei D. Sakharov when the 
dissident scientist was attacked in the Soviet press. As a result of his defense of 
Sakharov, Turchin was denounced in his institute and demoted from chief of 
laboratory to senior research associate. The computer scientist continued his defense 
of human rights, and in July 1974, he was dismissed from the institute. In the ensuing 
months Dr. Turchin found that he had been blacklisted at other places of employment.  
In the last few years Professor Turchin has been chairman of the Moscow chapter of 
Amnesty International, an organization that has worked for human rights throughout 
the world. When other Soviet scholars were persecuted, including Andrei 
Tverdokhlebov and Sergei Kovalev, Dr. Turchin helped publicize their plight. During 
this period, his wife, a mathematician, has financially supported her husband and their 
two sons.  
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In 1974 and 1975 Dr. Turchin received invitations to teach at several American 
universities, but the Soviet government refused to grant him an exit visa. Several 
writers in the West speculated that he would soon be arrested and tried, but so far he 
has been able to continue his activity, working within necessary limits. His apartment 
has been searched by the police and he has been interrogated.  
 
Dr. Turchin wrote The Phenomenon of Science before these personal difficulties 
began, and he did not intend it to be a political statement. Indeed, the manuscript was 
accepted for publication by a leading Soviet publishing house, and preliminary Soviet 
reviewers praised its quality. Publication of the book was stopped only after Dr. 
Turchin was criticized on other grounds. Therefore, that the initial publication of The 
Phenomenon of Science is outside the Soviet Union, should not be seen as a result of 
its content, but of the nonscientific activities of its author after it was written.  
 

Loren R. Graham  
Columbia University  
June 1977  
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Preface 
 
WHAT IS scientific knowledge of reality? To answer this question from a scientific 
point of view means to look at the human race from outside, from outer space so to 
speak. Then human beings will appear as certain combinations of matter which 
perform certain actions, in particular producing some kind of words and writing some 
kind of symbols. How do these actions arise in the process of life's evolution? Can 
their appearance be explained on the basis of some general principles related to the 
evolutionary process? What is scientific activity in light of these general principles? 
These are the questions we shall attempt to answer in this book.  
 
Principles so general that they are applicable both to the evolution of science and to 
biological evolution require equally general concepts for their expression. Such 
concepts are offered by cybernetics, the science of relationships, control, and 
organization in all types of objects. Cybernetic concepts describe physicochemical, 
biological, and social phenomena with equal success. It is in fact the development of 
cybernetics, and particularly its successes in describing and modeling purposeful 
behavior and in pattern recognition, which has made the writing of this book possible. 
Therefore it would be more precise to define our subject as the cybernetic approach to  
science as an object of study.  
 
The intellectual pivot of the book is the concept of the metasystem transition--the 
transition from a cybernetic system to a metasystem, which includes a set of systems 
of the initial type organized and controlled in a definite manner. I first made this 
concept the basis of an analysis of the development of sign systems used by science. 
Then, however, it turned out that investigating the entire process of life's evolution on 
earth from this point of view permits the construction of a coherent picture governed 
by uniform laws. Actually it would be better to say a moving picture, one which 
begins with the first living cells and ends with present-day scientific theories and the 
system of industrial production. This moving picture shows, in particular, the place of 
the phenomenon of science among the other phenomena of the world and reveals the 
significance of science in the overall picture of the evolution of the universe. That is 
how the plan of this book arose. How convincingly this picture has been drawn I 
propose to leave to the reader's judgment.  
 
In accordance with the plan of the book, many very diverse facts and conceptions are 
presented. Some of the facts are commonly known; I try to limit my discussion of 
them, fitting them into the system and relating them to my basic idea. Other facts are 
less well known, and in such cases I dwell on them in more detail. The same is true for 
the conceptions; some are commonly recognized while others are less well known and, 
possibly, debatable. The varied nature of the material creates a situation where 
different parts of the book require different efforts from the reader. Some parts are 
descriptive and easy to read, in other places it is necessary to go deeply into quite 
specialized matters. Because the book is intended for a broad range of readers and 
does not assume knowledge beyond the secondary school level, I provide the 
necessary theoretical  
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information in all such cases. These pages will require a certain effort of the untrained 
reader.  
 
The book gives an important place to the problems of the theory of knowledge and 
logic. They are, of course, treated from a cybernetic point of view. Cybernetics is now 
waging an attack on traditional philosophical epistemology, offering a new natural-
science interpretation of some of its concepts and rejecting others as untenable. Some 
philosophers oppose the rise of cybernetics and consider it an infringement on their 
territory. They accuse cyberneticists of making the truth ''crude'' and ''simplifying" it; 
they claim cyberneticists ignore the ''fundamental difference'' between different forms 
of the movement of matter (and this is despite the thesis of the world's unity!). But the 
philosopher to whom the possessive attitude toward various fields of knowledge is 
foreign should welcome the attacks of the cyberneticists. The development of physics 
and astronomy once destroyed natural philosophy, sparing philosophers of the need to 
talk approximately about a subject which scientists could discuss exactly. It appears 
that the development of cybernetics will do the same thing with philosophical 
epistemology or, to be more cautious, with a significant part of it. This should be 
nothing but gratifying. Philosophers will always have enough concerns of their own; 
science rids them of some, but gives them others. Because the book is devoted to 
science in toto as a definite method of interaction between human society and its 
environment, it contains practically no discussion of concrete natural-science 
disciplines. The presentation remains entirely at the level of the concepts of 
cybernetics, logic, and mathematics, which are equally significant for all modern 
science. The only exception is for some notions of modern physics which are 
fundamentally important for the theory of sign systems. A concrete analysis of 
science's interaction with production and social life was also outside the scope of the 
problem. This is a distinct matter to which a vast literature has been devoted; in this 
book I remain at the level of general cybernetic concepts.  
 
It is dangerous to attempt to combine a large amount of material from different fields 
of knowledge into a single, whole picture; details may become distorted, for a person 
cannot be a specialist in everything. Because this book attempts precisely to create 
such a picture, it is very likely that specialists in the fields of science touched on here 
will find omissions and inaccuracies; such is the price which must be paid for a wide 
scope. But such pictures are essential. It only remains for me to hope that this book 
contains nothing more than errors in detail which can be eliminated without detriment 
to the overall picture.  
 

V.F. Turchin  



  

 14

CHAPTER ONE 
 

The Initial Stages Of Evolution 
 

¾¾THE BASIC LAW OF EVOLUTION 

IN THE PROCESS of the evolution of life, as far as we know, the totalmass of living 
matter has always been and is now increasing and growing more complex in its 
organization. To increase the complexity of the organization of biological forms, nature 
operates by trial and error. Existing forms are reproduced in many copies, but these are 
not identical to the original. Instead they differ from it by the presence of small random 
variations. These copies then serve as the material for natural selection. They may act as 
individual living beings, in which case selection leads to the consolidation of useful 
variations, or elements of more complex forms, in which case selection is also directed to 
the structure of the new form (for example, with the appearance of multicellular 
organisms). In both cases selection is the result of the struggle for existence, in which 
more viable forms supplant less viable ones. 

This mechanism of the development of life, which was discovered by Charles Darwin, 
may be called the basic law of evolution. It is not among our purposes to substantiate or 
discuss this law from the point of view of those laws of nature, which could be declared 
more fundamental. We shall take the basic law of evolution as given. 

 

¾THE CHEMICAL ERA 

THE HISTORY OF LIFE before the appearance of the human being can be broken into 
two periods, which we shall call the "chemical'' era and the ''cybernetic'' era. The bridge 
between them is the emergence of animals with distinct nervous systems, including sense 
organs, nerve fibers for transmitting information, and nerve centers (nodes) for 
converting this information. Of course, these two terms do not signify that the concepts 
and methods of cybernetics are inapplicable to life in the ''chemical” era; it is simply that 
the animal of the ''cybernetic'' era is the classical object of cybernetics, the one to which 
its appearance and establishments a scientific discipline are tied. 

We shall review the history and logic of evolution in the pre cybernetic period only in 
passing, making reference to the viewpoints of present-day biologists.[1]Three stages can 
be identified in this period. 

In the first stage the chemical foundations of life are laid. Macromolecules of nucleic 
acids and proteins form with the property of replication, making copies or ''prints'' where 
one macromolecule serves as a matrix for synthesizing a similar macromolecule from 
elementary radicals. The basic law of evolution, which comes into play at this stage, 
causes matrices which have greater reproductive intensity to gain an advantage over 
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matrices with lesser reproductive intensity, and as a result more complex and active 
macromolecules and systems of macromolecules form. Biosynthesis demands free 
energy. Its primary sources solar radiation. The products of the partial decay of life forms 
that make direct use of solar energy (photosynthesis) also contain a certain reserve of free 
energy which may be used by the already available chemistry of the macromolecule. 
Therefore, this reserve is used by special forms for which the products of decay serve as a 
secondary source of free energy. Thus the division of life into the plant and animal 
worlds arises. 

The second stage of evolution is the appearance and development of the motor apparatus 
in animals. 

Plants and animals differ fundamentally in the way they obtain energy. With a given level 
of illumination the intensity of absorption of solar energy depends entirely on the amount 
of plant surface, not on whether it moves or remains stationary. Plants were refined by 
the creation of outlying light catchers--green leaves secured to a system of supports and 
couplings (stems, branches, and the like). This design works very well, ensuring a slow 
shift in the green surfaces toward the light which matches the slow change in 
illumination. 

The situation is entirely different with animals, in particular with the most primitive types 
such as the amoeba. The source of energy-- food--fills the environment around it. The 
intake of energy is determined by the speed at which food molecules are diffused through 
the shell that separates the digestive apparatus from the external environment. The speed 
of diffusion depends less on the size of the surface of the digestive apparatus than on the 
movement of this surface relative to the environment; therefore it is possible for the 
animal to take in food from different sectors of the environment. Consequently, even 
simple, chaotic movement in the environment or, on the other hand, movement of the 
environment relative to the organism (as is done, for example, by sponges which force 
water through themselves by means of their cilia) is very important for the primitive 
animal and, consequently, appears in the process of evolution. Special forms emerge 
(intracellular formations in one-celled organisms and ones containing groups of cells in 
multicellular organisms) whose basic function is to produce movement.  

In the third stage of evolution the movements of animals become directed and the 
incipient forms of sense organs and nervous systems appear in them. This is also a natural 
consequence of the basic law. It is more advantageous for the animal to move in the 
direction where more food is concentrated, and in order for it to do so it must have 
sensors that describe the state of the external environment in all directions (sense organs) 
and information channels for communication between these sensors and the motor 
apparatus (nervous system). At first the nervous system is extremely primitive. Sense 
organs merely distinguish a few situations to which the animal must respond differently. 
The volume of information transmitted by the nervous system is slight and there is no 
special apparatus for processing the information. During the process of evolution the 
sense organs become more complex and deliver an increasing amount of information 
about the external environment. At the same time the motor apparatus is refined, which 
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makes ever-increasing demands on the carrying capacity of the nervous system. Special 
formations appear--nerve centers which convert information received from the sense 
organs into information controlling the organs of movement. A new era begins: the 
''cybernetic'' era. 

 
¾CYBERNETICS 

TO ANALYZE evolution in the cybernetic period and to discover the laws governing the 
organization of living beings in this period (for brevity we will call them "cybernetic 
animals'') we must introduce certain fundamental concepts and laws from cybernetics. 

The term ''cybernetics'' itself was, of course, introduced by Norbert Wiener, who defined 
it descriptively as the theory of relationships and control in the living organism and the 
machine. As is true in any scientific discipline, a more precise definition of cybernetics 
requires the introduction of its basic concepts. Properly speaking, to introduce the basic 
concepts is the same as defining a particular science, for all that remains to be added is 
that a description of the world by means of this system of concepts is, in fact, the 
particular, concrete science.  

Cybernetics is based above all on the concept of the system, a certain material object 
which consists of other objects which are called subsystems of the given system. The 
subsystem of a certain system may, in its turn, be viewed as a system consisting of other 
subsystems. To be precise, therefore, the meaning of the concept we have introduced 
does not lie in the term ''system'' by itself, that is, not in ascribing the property of ''being a 
system'' to a certain object (this is quite meaningless, for any object may be considered a 
system), but rather in the connection between the terms ''system'' and "subsystem," which 
reflects definite relationship among objects.  

The second crucial concept of cybernetics is the concept of the state of a system (or 
subsystem). Just as the concept of the system relies directly on our spatial intuition, the 
concept of state relies directly on our intuition of time and it cannot be defined except by 
referring to experience. When we say that an object has changed in some respect we are 
saying that it has passed into a different state. Like the concept of system. The concept of 
state is a concealed relationship: the relationship between two moments in time. If the 
world were immobile the concept of state would not occur, and in those disciplines where 
the world is viewed statically, for example in geometry, there is no concept of state. 

Cybernetics studies the organization of systems in space and time, that is, it studies how 
subsystems are connected into a system and how change in the state of some subsystems 
influences the state of other subsystems. The primary emphasis, of course, is on 
organization in time which, when it is purposeful, is called control. Causal relations 
between states of a system and the characteristics of its behavior in time which follow 
from this are often called the dynamics of the system, borrowing a term from physics. 
This term is not applicable to cybernetics because when we speak of the dynamics of a 
system we are inclined to view it as something whole, whereas cybernetics is concerned 
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mainly with investigating the mutual influences of subsystems making up the particular 
system. Therefore, we prefer to speak of organization in time, using the term dynamic 
description only when it must be juxtaposed to the static description which considers 
nothing but spatial relationships among subsystems.  

A cybernetic description may have different levels of detail. The same system may be 
described in general outline, in which it is broken down into a few large subsystems or 
"blocks,'' or in greater detail, in which the structure and internal connections of each 
block are described. But there is always some final level beyond which the cybernetic 
description does not apply. The subsystems of this level are viewed as elementary and 
incapable of being broken down into constituent parts. The real physical nature of the 
elementary subsystems is of no interest to the cyberneticist, who is concerned only with 
how they are interconnected. The nature of two physical objects may be radically 
different, but if at some level of cybernetic description they are organized from 
subsystems in the same way (considering the dynamic aspect!), then from the point of 
view of cybernetics they can be considered, at the given level of description, identical. 
Therefore, the same cybernetic considerations can be applied to such different objects as 
a radar circuit, a computer program, or the human nervous system. 

 
¾DISCRETE AND CONTINUOUS SYSTEMS 

THE STATE OF A SYSTEM is defined through the aggregate of states of all its 
subsystems, which in the last analysis means the elementary subsystems. There are two 
types of elementary subsystems: those with a finite number of possible states, also called 
subsystems with discrete states, and those with an infinite number, also called subsystems 
with continuous states. The wheel of a mechanical calculator or taxi meter is an example 
of a subsystem with discrete states. This wheel is normally in one of 10 positions which 
correspond to the 10 digits between 0 and 9. From time to time it turns and passes from 
one state into another. This process of turning does not interest us. The correct 
functioning of the system (of the calculator or meter) depends entirely on how the 
''normal'' positions of the wheels are interconnected, while how the change from one 
position (state) to another takes place is inconsequential. Therefore we can consider the 
calculator as a system whose elementary subsystems can only be in discrete states. A 
modern high-speed digital computer also consists of subsystems (trigger circuits) with 
discrete states. Everything that we know at the present time regarding the nervous 
systems of humans and animals indicates that the interaction of subsystems (neurons) 
with discrete states is decisive in their functioning.  

On the other hand, a person riding a bicycle and an anal computer are both examples of 
systems consisting of subsystems with continuous states. In the case of the bicycle rider 
these subsystems are all the parts of the bicycle and human body which are moving 
relative to one another: the wheels, pedals, handlebar, legs, arms, and so on. Their states 
are their positions in space. These positions are described by coordinates (numbers) 
which can assume continuous sets of values.  
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If a system consists exclusively of subsystems with discrete states then the system as a 
whole must be a system with discrete states. We shall simply call such systems ''discrete 
systems,'' and we shall call systems with continuous sets of states ''continuous systems.'' 
In many respects discrete systems are simpler to analyze than continuous ones. Counting 
the number of possible states of a system, which plays an important part in cybernetics, 
requires only a knowledge of elementary arithmetic in the case of discrete systems. 
Suppose discrete system A consists of two subsystems a1 and a2; subsystem a1 may have 
n1 possible states, while subsystem a2 may have n2. Assuming that each state of system a1 
can combine with each state of system a2 we find that N, the number of possible states of 
system A, is n1n2. If system A consists of m subsystems a1 where i  = 1, 2, . . .,  m, then  

N = n1n2, . . . nm 

From this point on we shall consider only discrete systems. In addition to the pragmatic 
consideration that they are simpler in principle than continuous systems, there are two 
other arguments for such a restriction. 

First, all continuous systems can in principle be viewed as discrete systems with an 
extremely large number of states. In light of the knowledge quantum physics has given 
us, this approach can even be considered theoretically more correct. The reason why 
continuous systems do not simply disappear from cybernetics is the existence of a very 
highly refined apparatus for consideration of such systems: mathematical analysis, above 
all, differential equations.  

Second, the most complex cybernetic systems, both those which have arisen naturally and 
those created by human hands, have invariably proved to be discrete. This is seen 
especially clearly in the example of animals. The relatively simple biochemical 
mechanisms that regulate body temperature, the content of various substances in the 
blood, and similar characteristics are continuous, but the nervous system is constructed 
according to the discrete principle. 

 
¾¾THE RELIABILITY OF DISCRETE SYSTEMS 

WHY DO DISCRETE SYSTEMS prove to be preferable to continuous ones when it is 
necessary to perform complex functions? Because they have a much higher reliability.  In 
a cybernetic device based on the principle of discrete states each elementary subsystem 
may be in only a small number of possible states, and therefore the system ordinarily 
ignores small deviations from the norm of various physical parameters of the system, 
reestablishing one of its permissible states in its ''primeval purity.'' In a continuous 
system, however, small disturbances continuously accumulate and if the system is too 
complex it ceases functioning correctly. Of course, in the discrete system too there is 
always the possibility of a breakdown, because small changes in physical parameters do 
lead to a finite probability that the system will switch to an ''incorrect'' state. Nonetheless, 
discrete systems definitely have the advantage. Let us demonstrate this with the following 
simple example.  
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Suppose we must transmit a message by means of electric wire over a distance of, say, 
100 kilometers (62 miles). Suppose also that we are able to set up an automatic station for 
every kilometer of wire and that this station will amplify the signal to the power it had at 
the previous station and, if necessary, convert the signal.  

 

 

Figure 1.1. Transmission of a signal in continuous and discrete systems (The 
shaded part shows the area of signal ambiguity.) 

We assume that the maximum signal our equipment permits us to send has a magnitude 
of one volt and that the average distortion of the signal during transmission from station 
to station (noise) is equal to 0.1 volt.  

First let us consider the continuous method of data transmission. The content of the 
message will be the amount of voltage applied to the wire at its beginning. Owing to 
noise, the voltage at the other end of the wire—the message received--will differ from the 
initial voltage. How great will this difference be? Considering noise in different segments 
of the line to be independent, we find that after the signal passes the 100 stations the root-
mean square magnitude of noise will be one volt (the mean squares of noise are 
summed). Thus, average noise is equal to the maximum signal, and it is therefore plain 
that we shall not in fact receive any useful information. Only by accident can the value of 
the voltage received coincide with the value of the voltage transmitted. For example, if a 
precision of 0.1 volt satisfies us the probability of such a coincidence is approximately 
1/10.  

Now let us look at the discrete variant. We shall define two "meaningful’ states of the 
initial segment of the wire: when the voltage applied is equal to zero and when it is 
maximal (one volt). At the intermediate stations we install automatic devices which 
transmit zero voltage on if the voltage received is less than 0.5 volt and transmit a normal 
one-volt signal if the voltage received is more than 0.5 volt. In this case, therefore, for 
one occasion (one signal) information of the "yes/no" type is transmitted (in cybernetics 
this volume of information is called one "bit"). The probability of receiving incorrect 
information depends strongly on the law of probability distribution for the magnitude of 
noise. Noise ordinarily follows the so-called normal law. Assuming this law we can find 
that the probability of error in transmission from one station to the next (which is equal to 
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the probability that noise will exceed 0.5 volt) is 0.25 . 10-6. Thus the probability of an 
error in transmission over the full length of the line is 0.25 . 10-4. To transmit the same 
message as was transmitted in the previous case--that is, a value between 0 and 1 with a 
precision of 0.1 of a certain quantity lying between 0 and l--all we have to do is send four 
''yes/no'' type signals. The probability that there will be error in at least one of the signals 
is 10-4. Thus, with the discrete method the total probability of error is 0.01 percent, as 
against 90 percent for the continuous method. 

 
¾¾INFORMATION 

WHEN WE BEGAN describing a concrete cybernetic system it was impossible not to 
use the term information--a word familiar and understandable in its informal 
conversational meaning. The cybernetic concept of information, however, has an exact 
quantitative meaning. 

Let us imagine two subsystems A and B 

 

The two subsystems are interconnected in such a way that a change in the state of A leads 
to a change in the state of B. This can also be expressed as follows: A influences B. Let 
us consider the state of B at a certain moment in time t1and at a later moment t2. We shall 
signify the first state as S1 and the second as S2. StateS2 depends on state S1. The relation 
of S2 to S1 is probabilistic, however, not unique. This is because we are not considering 
an idealized theoretical system governed by a deterministic law of movement but rather a 
real system whose states S1 are the results of experimental data. With such an approach 
we may also speak of the law of movement, understanding it in the probabilistic sense--
that is, as the conditional probability of state S2 at moment t2 on the condition that the 
system was instate S1 at moment t1. Now let us momentarily ignore the law of movement. 
We shall use N to designate the total number of possible states of subsystem B and 
imagine that conditions are such that at any moment in time system B can assume any of 
N states with equal probability, regardless of its state at the preceding moment. Let us 
attempt to give a quantitative expression to the degree(or strength) of the cause-effect 
influence of system A on such an inertialess and ''lawless'' subsystem B.  Suppose B acted 
upon by A switches to a certain completely determinate state. It is clear that the ''strength 
of influence'' which’s required from A for this depends on N, and will be larger as N is 
larger. For example, if N= 2 then B, even if it is completely unrelated to A, when acted 
upon by random factors can switch with a probability of .5 to the very state A 
''recommends.'' But if N = 109, when we have noticed such a coincidence we shall hardly 
doubt the influence of A on B. Therefore, some monotonic increasing function of N 
should serve as the measure of the 'strength of the influence'' of A on B. What this 
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essentially means is that it serves as a measure of the intensity of the cause-effect 
relationship between two events, the state of A in the time interval from t1 to t2 and the 
state of B at t2. In cybernetics this measure is called the quantity of information 
transmitted from A to B between moments in time t1 and t2, and a logarithm serves as the 
monotonic increasing function. So, in our example, the quantity of information I passed 
from A to B is equal to log N.  

Selection of the logarithmic function is determined by its property according to which  

log N1N2 = log N1+ log N2 

Suppose system A influences system B which consists of two independent subsystems B1 
and B2 with number of possible states N1 and N2 respectively.  

 

Then the number of states of system B is N1N2and the quantity of information I that must 
be transmitted to system B in order for it to assume one definite state is, owing to the 
above-indicated property of the logarithm, the sum 

I = log N1N2 = logN1  + log N2 = I1 + I2 

where I1 and I2 are the quantities of information required by subsystems B1 +B2. Thanks to 
this property the information assumes definite characteristics of a substance; it spreads 
over the independent subsystems like a fluid filling a number of vessels. We are speaking 
of the joining and separation of information flows, information capacity, and information 
processing and storage. 

The question of information storage is related to the question of the law of movement. 
Above we mentally set aside the law of movement in order to define the concept of 
information transmission. If we now consider the law of movement from this new point 
of view, it can be reduced to the transmission of information from system B at moment t1 
to the same system B at moment t1. If the state of the system does not change with the 
passage of time, this is information storage. If state S2 is uniquely determined by S1 at a 
preceding moment in time the system is called fully deterministic. If S1 is uniquely 
determined by S2the system is called reversible; for a reversible system it is possible in 
principle to compute all preceding states on the basis of a given state because information 
loss does not occur. If the system is not reversible information is lost. The law of 
movement is essentially something which regulates the flow of information in time from 
the system and back to itself. 
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Figure 1.4 shows the chart of information transmission from system A to system C 
through system B.  

 

 

B is called the communication channel. The state of B can be influenced not only by the 
state of system A, but also by a certain uncontrolled factor X, which is called noise. The 
final state of system C in this case depends not only on the state of A, but also on factor X 
(information distortion). One more important diagram of information exchange is shown 
in figure 1.5.  

 

 

This is the so-called feedback  diagram. The state of system A at t1 influences the state of 
B at t2, then the latter influences the state of A at t3. The circle of information movement 
is completed. 

With this we conclude for now our familiarization with the general concepts of 
cybernetics and turn to the evolution of life on earth. 

 
¾¾THE NEURON 

THE EXTERNAL APPEARANCE of a nerve cell (neuron) is shown schematically in 
figure 1.6.  
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Figure 1.6. Diagram of the structure of a neuron. 

A neuron consists of a fairly large (up to 0.1 mm) cell body from which several processes 
called dendrites spread, giving rise to finer and finer processes like the branching of a 
tree. In addition to the dendrites one other process branches out from the body of the 
nerve cell. This is the axon, which resembles a long, thin wire. Axons can be very long, 
up to a meter, and they end in treelike branching systems as do the dendrites. At the ends 
of the branches coming from the axon one can see small plates or bulblets. The bulblets 
of one neuron approach close to different segments of the body or dendrites of another 
neuron, almost touching them. 

These contacts are called synapses and it is through them that neurons interact with one 
another. The number of bulblets approaching the dendrites of the single neuron may run 
into the dozens and even hundreds. In this way the neurons are closely interconnected 
and form a nervenet . 

When one considers certain physicochemical properties (above all the propagation of 
electrical potential over the surface of the cell) one discovers the neurons can be in one of 
two states--the state of dormancy or the state of stimulation. From time to time, 
influenced by other neurons or outside factors, the neuron switches from one state to the 
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other. This process takes a certain time, of course, so that an investigator who is studying 
the dynamics of the electrical state of a neuron, for example, considers it a system with 
continuous states. But the information we now have indicates that what is essential for 
the functioning of the nervous system as a whole is not the nature of switching processes 
but the very fact that the particular neurones are in one of these two states. Therefore, we 
may consider that the nerve net is a discrete system which consists of elementary 
subsystems (the neurons) with two states. 

When the neuron is stimulated, a wave of electrical potential runs along the axon and 
reaches the bulblets in its branched tips. From the bulblets the stimulation is passed 
across the synapses to the corresponding sectors of the cell surface of other neurons. The 
behavior of a neuron depends on the state of its synapses. The simplest model of the 
functioning of the nerve net begins with the assumption that the state of the neuron at 
each moment in time is a single-valued function of the state of its synapses. It has been 
established experimentally that the stimulation of some synapses promotes stimulation of 
the cell, whereas the stimulation of other synapses prevents stimulation of the cell. 
Finally, certain synapses are completely unable to conduct stimulation from the bulblets 
and therefore do not influence the state of the neuron. It has also been established that the 
conductivity of a synapse increases after the first passage of a stimulus through it. 
Essentially a closing of the contact occurs. This explains how the system of 
communication among neurones, and consequently the nature of the nervenet's 
functioning, can change without a change in the relative positions of the neurons.  

The idea of the neuron as an instantaneous processor of information received from the 
synapses is, of course, very simplified. Like any cell the neuron is a complex machine 
whose functioning has not yet been well understood. This machine has a large internal 
memory, and therefore its reactions to external stimuli may show great variety. To 
understand the general rules of the working of the nervous system, however. we can 
abstract from these complexities (and really, we have no other way to go!) and begin with 
the simple model outlined above. 

 
¾THE NERVE NET 

A GENERALIZED DIAGRAM of the nerve system of the "cybernetic animal'' in its 
interaction with the environment is shown in figure 1.7.  

 



  

 25

 

Figure 1.7. Nervous system of the "cybernetic animal" 

Those sensory nerve cells which are stimulated by the action of outside factors are called 
receptors (that is, receivers) because they arête first to receive information about the state 
of the environment. This information enters the nerve net and is converted by it. As a 
result certain nerve cells called effectors  are stimulated. Branches of the effector cells 
penetrate those tissues of the organism which the nervous system affects directly. 
Stimulation of the effector causes a contraction of the corresponding muscle or the 
stimulation of the activity of the appropriate gland. We shall call the state of all receptors 
at a certain moment in time the situation at that moment. (It would be more precise--if 
more cumbersome--to say the ''result of the effect of the situation on the sense organs.'') 
We will call the state of all the effectors the ''action.''  Therefore, the role of the nerve net 
is to convert a situation into an action. 

It is convenient to take the term ''environment'' from figure 1.7 to mean not just the 
objects which surround the animal, but also its bone and muscle system and generally 
everything that is not part of the nervous system. This makes it unnecessary to give 
separate representations in the diagram to the animal body and what is not the body, 
especially because this distinction is not important in principle for the activity of the 
nervous system. The only thing that is important is that stimulation of the effectors leads 
to certain changes in the "environment.'' With this general approach to the problem as the 
basis of our consideration, we need only classify these changes as ''useful'' or ''harmful'' 
for the animal without going into further detail.  

The objective of the nervous system is to promote the survival and reproduction of the 
animal. The nervous system works well when stimulation of the effectors leads to 
changes in the state of the environment that help the animal survive or reproduce, and it 
works badly when it leads to the reverse. With its increasing refinement in the process of 
evolution, the nervous system has performed this task increasingly well. How does it 
succeed in this? What laws does this process of refinement follow?  

We will try to answer these questions by identifying in the evolution of the animal 
nervous system several stages that are clearly distinct from a cybernetic point of view and 
by showing that the transition from each preceding stage to each subsequent stage 
follows inevitably from the basic law of evolution. Because the evolution of living beings 
in the cybernetic era primarily concerns the evolution of their nervous systems, a 
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periodization of the development of the nervous system yields a periodization of the 
development of life as a whole. 

 
¾¾THE SIMPLE REFLEX (IRRITABILITY) 

THE SIMPLEST VARIANT of the nerve net is when there is no net at all. In this case 
the receptors are directly connected to the effectors and stimulation from one or several 
receptors is transmitted to one or several effectors. We shall call such a direct connection 
between stimulation of a receptor and an effector the simple reflex. 

This stage, the third in our all-inclusive enumeration of the stages of evolution, is the 
bridge between the chemical and cybernetic eras. The Coelenterata are animals fixed at 
the level of the simple reflex. As an example let us take the hydra, which is studied in 
school as a typical representative of the Coelenterata. The body of a hydra has the shape 
of an elongated sac. Its interior, the coelenteron, is connected to the environment through 
a mouth, which is surrounded by several tentacles. The walls of the sac consist of two 
layers of cells: the inner layer (entoderm) and the outer layer (ectoderm). Both the 
ectoderm and the entoderm have many muscle cells which contain small fibers that are 
able to contract. thus setting the body of the hydra in motion. In addition, there are nerve 
cells in the ectoderm; the cells located closest to the surface are receptors and the cells 
which are set deeper, among the muscles, are effectors. If a hydra is pricked with a needle 
it squeezes itself into a tiny ball. This is a simple reflex caused by transmission of the 
stimulation from the receptors to the effectors. 

 

Figure 1.8. The structure of the hydra. 
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But the hydra is also capable of much more complex behavior. After it has captured prey, 
the hydra uses its tentacles to draw the prey to its mouth and then swallows the prey. This 
behavior can also be explained by the aggregate action of simple reflexes connecting 
effectors and receptors locally within small segments of the body. For example, the 
following model of a tentacle explains its ability to wrap itself around captured objects.  

 

Figure 1.9. Model of a tentacle 

Let us picture a certain number of links connected by hinges (for simplicity we shall 
consider a two-dimensional picture). Points A and B, A ' and B', B and C, and B' and C', 
etc. are interconnected by strands which can contract (muscles). All these points are 
sensitive and become stimulated when they touch an object (receptors). The stimulation 
of each point causes a contraction of the two strands connected to it (reflex). 

 
¾¾THE COMPLEX REFLEX 

THE SIMPLE REFLEX relationship between the stimulated cell and the muscle cell 
arises naturally, by the trial and error method, in the process of evolution. If the 
correlation between stimulation of one cell and contraction of another proves useful for 
the animal, then this correlation becomes established and reinforced. Where 
interconnected cells are mechanically copied in the process of growth and reproduction, 
nature receives a system of parallel-acting simple reflexes resembling the tentacle of the 
hydra. But when nature has available a large number of receptors and effectors which are 
interconnected by pairs or locally, there is a " temptation” to make the system of 
connections more complex by introducing intermediate neurons. This is advantageous 
because where there is a system of connections among all neurons, forms of behavior that 
are not possible where all connections are limited to pairs or localities now become so. 
This point can be demonstrated by a simple calculation of all the possible methods of 
converting a situation into an action with each method of interconnection. For example, 
assume that we have n receptors and effectors connected by pairs. In each pair the 
connection may be positive (stimulation causes stimulation and dormancy evokes 
dormancy) or negative (stimulation evokes dormancy and dormancy causes stimulation). 
In all, therefore, 2n variants are possible, which means 2n variants of behavior. But if we 
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assume that the system of connections can be of any kind, which into say that the state of 
each effector (stimulation or dormancy) can depend in any fashion on the state of all the 
receptors, then a calculation of all possible variants of behavior yields the number 
*2(2^n)n, which is immeasurably larger than 2n . 

Exactly the same calculation leads to the conclusion that joining any subsystems which 
join independent groups of receptors and effectors into single system always leads to an 
enormous increase in the number of possible variants of behavior. Throughout the entire 
course of the history of life, therefore, the evolution of the nervous system has progressed 
under the banner of increasing centralization. 

But 'centralization'' can mean different thins. If all neurons are connected in one 
senselessly confused clump, then the system-- despite its extremely "centralized'' nature--
will hardly have a chance to survive in the struggle for existence. Centralization poses the 
following problem: how to select from all the conceivable ways of joining many 
receptors with many effectors (by means of intermediate neurons if necessary) that way 
which will correlate a correct action (that is, one useful for survival and reproduction) to 
each situation? After all, a large majority of the ways of interconnection do not have this 
characteristic. 

We know that nature takes every new step toward greater complexity in living structures 
by the trial and error method. Let us see what direct application of the trial and error 
method to our problem yields. As an example we shall consider a small system consisting 
of 100 receptors and100 effectors. We shall assume that we have available as many 
neurons as needed to create an intermediate nerve net and that we are able to determine 
easily whether the particular method of connecting neurons produces a correct reaction to 
each situation. We shall go through all conceivable ways of connection until we find the 
one we need. Where n = 100 the number of functionally different nerve nets among n 
receptors and n effectors is 

2(2^n)n =~ 10(10^32) 

This is an inconceivably large number. We cannot sort through such a number of variants 
and neither can Mother Nature. If every atom in the entire visible universe were engaged 
in examining variants and sorting them at a speed of I billion items a second, even after 
billions of billions of years (and our earth has not existed for more than 10 billion years) 
not even one billionth of the total number of variants would have been examined. 

But somehow an effectively functioning nerve net does form! And higher animals have 
not hundreds or thousands but millions of receptors and effectors. The answer to the 
riddle is concealed in the hierarchical structure of the nervous system. Here again we 
must make an excursion into the area of general cybernetic concepts. We shall call the 
fourth stage of evolution the stage of the complex reflex, but we shall not be able to 
define this concept until we have familiarized ourselves with certain facts about 
hierarchically organized nerve nets. 
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[1]I am generally following the report by S. E. Schnoll entitled "The Essence of Life. 
Invariance in the General Direction of Biological Evolution,'' in Materialy seminara 
"Dialektika i sovremennoe estestvoznanie"(Materials of the '"Dialectics and Modern 
Natural Science'' Seminar), Dubna, 1967.  
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CHAPTER TWO 
 

Hierarchical Structures 
 

¾¾THE CONCEPT OF THE CONCEPT 

LET US LOOK at a nerve net which has many receptors at the input but just one effector 
at the output. Thus, the nerve net divides the set of all situations into two subsets: 
situations that cause stimulation of the effector and situations that leave it dormant. The 
task being performed by the nerve net in this case is called recognition (discrimination), 
recognizing that the situation belongs to one of the two sets. In the struggle for existence 
the animal is constantly solving recognition problems, for example, distinguishing a 
dangerous situation from one that is not, or distinguishing edible objects from inedible 
ones. These are only the clearest examples. A detailed analysis of animal behavior leads 
to the conclusion that the performance of any complex action requires that the animal 
resolve a large number of "small'' recognition problems continuously. 

In cybernetics a set of situations is called a concept.[1] To make clear how the cybernetic 
understanding of the word ''concept'' is related to its ordinary meaning let us assume that 
the receptors of the nerve net under consideration are the light-sensitive nerve endings of 
the retina of the eye or, speaking in general, some light-sensitive points on a screen which 
feed information to the nerve net. The receptor is stimulated when the corresponding 
sector of the screen is illuminated (more precisely, when its illumination is greater than a 
certain threshold magnitude) and remains dormant if the sector is not illuminated. If we 
imagine a light spot in place of each stimulated receptor and a dark spot in place of each 
unstimulated one, we shall obtain a picture that differs from the image striking the screen 
only by its discrete nature (the fact that it is broken into separate points) and by the 
absence of semitones. We shall consider that there are a large number of points 
(receptors) on the screen and that the images which can appear on the screen 
(‘‘pictures’’) have maximum contrasts--that is, they consist entirely of black and white. 
Then each situation corresponds to a definite picture.  

According to traditional Aristotelian logic, when we think or talk about a definite picture 
(for example the one in the upper left corner of figure2.1) we are dealing with a particular 
concept. In addition to particular concepts there are general or abstract concepts. For 
example, we can think about the spot in general--not as a particular, concrete spot (for 
example, one of those represented in the top row in figure 2.1) but about the spot as such. 
In the same way we can have an abstract concept of a straight line, a contour, a rectangle, 
a square, and so on.[2] 
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Figure 2.1. Pictures representing various concepts. 

But what exactly does ''possess an abstract concept'' mean? How can we test whether 
someone possesses a given abstract concept--for example the concept of ''spot''? There is 
plainly just one way: to offer the person being tested a series of pictures and ask him in 
each case whether or not it is a spot. If he correctly identifies each and every spot (and 
keep in mind that this is from the point of view of the test-maker) this means that he 
possesses the concept of spot. In other words, we must test his ability to recognize the 
affiliation of any picture offered with the set of pictures which we describe by the word 
''spot.'' Thus the abstract concept in the ordinary sense of the word (in any case, when we 
are talking about images perceived by the sense organs) coincides with the cybernetic 
concept we introduced--namely, that the concept is a set of situations. Endeavoring to 
make the term more concrete, we therefore call the task of recognition the task of pattern 
recognition, if we have in mind ''generalized patterns" or the task of recognizing 
concepts, if we have in mind the recognition of particular instances of concepts. 

In traditional logic the concrete concept of the ''given picture'' corresponds to a set 
consisting of one situation (picture). Relationships between sets have their direct analogs 
in relationships between concepts. If capital letters are used to signify concepts and small 
ones are used for the respective sets, the complement of set a, that is, the set of all 
conceivable situations not included in a, corresponds to the concept of "not A. ''The 
intersection of sets a, and b, that is, the set of situations which belong to both a and b, 
corresponds to the concept of ''A and B simultaneously." For example, if A is the concept 
of ''rectangle'' and B is the concept of ''rhombus",  then ''A and B simultaneously'' is the 
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concept of ''square." The union of sets a and b, that is, the set of situations which belong 
to at least one of sets a and b, corresponds to the concept "either A, B or A and B.'' If set a 
includes set b, that is, each element of b is included in a but the contrary is not true, then 
the concept B is a particular case of the concept A. In this case it is said that the concept A 
is more general (abstract) than the concept B, and the concept B is more concrete than A. 
For example, the square is a particular case of the rectangle. Finally, if sets a and b 
coincide then the concepts A and B are actually identical and distinguished, possibly, by 
nothing but the external form of their description, the method of recognition. Having 
adopted a cybernetic point of view, which is to say having equated the concept with a set 
of situations, we should consider the correspondences enumerated above not as 
definitions of new terms but simply as an indication that there are several pairs of 
synonyms in our language. 

 
¾¾DISCRIMINATORS AND CLASSIFIERS 

WE SHALL CALL a nerve net that performs the task of recognition a discriminator 
(recognizer), and the state of the effector at its output will simply be called the state of the 
discriminator. Moving on from the concept of discriminator, we shall introduce the 
somewhat more general concept of classifier. The discriminator separates the set of all 
conceivable situations into two nonintersecting subsets: A and not -A. It is possible to 
imagine the division of a complete set of situations into an arbitrary number n of 
nonintersecting subsets. Such subsets are ordinarily called classes. Now let us picture a 
certain subsystem C which has n possible states and is connected by a nerve net 
containing receptors in such a way that when a situation belongs to class i (concept i) the 
subsystem C goes into state i. We shall call such a subsystem and its nerve net a classifier 
for a set of n concepts (classes), and when speaking of the state of a classifier it will be 
understood that we mean the state of subsystem C (output subsystem). The discriminator 
is, obviously, a classifier with number of states n= 2. 

In a system such as the nervous system, which is organized on the binary principle, the 
subsystem C with n sets will, of course, consist of a certain number of elementary 
subsystems with two stages that can be considered the output subsystems (effectors) of 
the discriminators. The state of the classifier will, therefore, be described by indicating 
the states of a number of discriminators. These discriminators, however, can be closely 
interconnected by both the structure of the net and the function performed in the nervous 
system; in this case they should be considered in the aggregate as one classifier. 

If no restrictions are placed on the number of states n the concept of the classifier really 
loses its meaning. In fact, every nerve net correlates one definite output state to each 
input state, and therefore a set of input states corresponds to each output state and these 
sets do not intersect. Thus, any cybernetic device with an input and an output can be 
formally viewed as a classifier. To give this concept a narrower meaning we shall 
consider that the number of output states of a classifier is many fewer than the number of 
input states so that the classifier truly ''classifies’ the input states (situations) according to 
a relatively small number of large classes. 
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¾¾HIERARCHIES OF CONCEPTS 

 
 

 
Figure 2.2. Hierarchy of classifiers. 

FIGURE 2.2 shows a diagram of a classifier organized on the hierarchical principle. The 
hierarchy is, in general, that structure of a system made up of subsystems in which each 
subsystem is given a definite whole number, called its level, and the interaction of 
subsystems depends significantly on the difference in their levels according to some 
general principle. Ordinarily this principle is transmission of information in a definite 
direction, from top to bottom or bottom to top, from a given level to the next. In our case 
the receptors are called the zero level and the information is propagated from the bottom 
up. Each first-level subsystem is connected to a certain number of receptors and its state 
is determined by the states of the corresponding receptors. In the same way each second-
level subsystem is connected with a number of first-level subsystems and so on. At the 
highest level (the fourth level in the diagram) there is one output subsystem, which gives 
the final answer regarding the affiliation of the situations with a particular class.  

All subsystems at intermediate levels are also classifiers. The direct input for a classifier 
at level K is the states of the classifiers on level K - 1, the aggregate of which is the 
situation subject to classification on level K. In a hierarchical system containing more 
than one intermediate level, it is possible to single out hierarchical subsystems that bridge 
several levels. For example, it is possible to consider the states of all first-level classifiers 
linked to a third-level classifier as the input situation for the third-level classifier. 
Hierarchical systems can be added onto in breadth and height just as it is possible to put 
eight cubes together into a cube whose edges are twice as long as before. One can add 
more cubes to this construction to make other forms. 

Because there is a system of concepts linked to each classifier the hierarchy of classifiers 
generates a hierarchy of concepts. Information is converted as it moves from level to 
level and is expressed in terms of increasingly ''high-ranking'' concepts. At the same time 
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the amount of information being transmitted gradually decreases, because information 
that is insignificant from the point of view of the task given to the ''supreme''(output) 
classifier is discarded. 

Let us clarify this process with the example of the pictures shown in figure 2.1. Suppose 
that the assigned task is to recognize ''houses''.  We shall introduce two intermediate 
concept levels. We shall put the aggregate of concepts of ''segment'' on the first level and 
the concept of ''polygon'' on the second. The concept of ''house'' comes on the third level. 

By the concepts of ''segment'' we mean the aggregate of concepts of segments with 
terminal coordinates x1, y1, and x2, y2, where the numbers x1, y1, and x2, y2, can assume 
any values compatible with the organization of the screen and the system of coordinates. 
To be more concrete, suppose that the screen contains1,000x 1,000 light-sensitive points. 
Then the coordinates can be ten-digit binary numbers (210 = 1,024 > 1,000), and a 
segment with given ends will require four such numbers, that is to say 40 binary orders, 
for its description. Therefore, there are 240 such concepts in all. These are what the first-
level classifiers must distinguish.  

One should not think that a segment with given ends is a concrete concept--a set 
consisting of a single picture. When we classify this picture as a segment with given ends 
we are abstracting from the slight curvature of the line, from variations in its thickness, 
and the like (see figure 2.1). There are different ways to establish the criterion for 
determining which deviations from the norm should be considered insignificant. This 
does not interest us now.  

Each first-level classifier should have at the output a subsystem of 40 binary orders on 
which the coordinates of the ends of the segment are ''recorded.'' How many classifiers 
are needed? This depends on what kind of pictures are expected at the input of the 
system. Let us suppose that 400 segments are sufficient to describe any picture. This 
means that 400 classifiers are enough. We shall divide the entire screen into 400 squares 
of 50 x 50 points and link each square with a classifier which will fix a segment which is 
closest to it in some sense (the details of the division of labor among classifiers are 
insignificant). If there is no segment, let the classifier assume some conventional 
''meaningless'' state, for example where all four coordinates are equal to 1,023. 

If our system is offered a picture that shows a certain number of segments then the 
corresponding number of first-level classifiers will indicate the coordinates of the ends of 
the segments and the remaining classifiers will assume the state ''no segment.'' This is a 
description of the situation in terms of the concepts of "segment.'' Let us compare the 
amount of information at the zero level and at the first level. At the zero level of our 
system 1,000 x 1,000 = 106 receptors receive 1 million bits of information. At the first 
level there are 400 classifiers, each of which contains 40 binary orders, that is, 40 bits of 
information; the total is 16,000 bits. During the transition to the first level the amount of 
information has decreased 62.5 times. The system has preserved only the information it 
considers ''useful'' and discarded the rest. The relativity of these concepts is seen from the 
fact that if the picture offered does not correspond tithe hierarchy of concepts of the 
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recognition system the system's reaction will be incorrect or simply meaningless. For 
example, if there are more than 400 segments in the picture not all of them will be fixed, 
and if a picture with a spot is offered the reaction to it will be the same as to any empty 
picture.  

We divide the aggregate of concepts of ''polygon," which occupies the second level of the 
hierarchy, into two smaller aggregates: isosceles triangles and parallelograms. We single 
out a special aggregate of rectangles from the parallelograms. Considering that assigning 
the angle and length requires the same number of bits (10) as for the coordinate, we find 
that 50 bits of information are needed to assign a definite isosceles triangle, 60 bits for a 
parallelogram, and 50 bits for a rectangle. The second-level classifiers should be designed 
accordingly. It is easy to see that all the information they need is available at the first 
level. The existence of a polygon is established where there are several segments that 
stand in definite relationships to one another. There is a further contraction of the 
information during the transition to the second level. Taking one third of the total of 400 
segments for each type of polygon we obtain a system capable of fixing 44 triangles, 33 
rectangles, and 33 parallelograms (simultaneously). Its information capacity is 5,830 bits, 
which is almost three times less than the capacity of the first level. On the other hand, 
when faced with an irregular triangle or quadrangle, the system is nonplussed! 

It is easy to describe the concept of ''house'' in the language of second-level concepts. A 
house consists of four polygons--one rectangle, one isosceles triangle, and two 
parallelograms--which stand in definite relationships to one another. The base of the 
isosceles triangle coincides with one side of the rectangle, and so on. 

To avoid misunderstanding it should be pointed out that the hierarchy of concepts we are 
discussing has a much more general meaning than the hierarchy of concepts by 
abstractness (generality) which is often simply called the ''hierarchy of concepts.'' The 
pyramid of concepts used in classifying animals is an example of a hierarchy by 
generality. The separate individual animals (the ''concrete'' concepts) are set at the zero 
level. At the first level are the species, at the second the genera, then the orders families, 
classes, and phyla. At the peak of the pyramid is the concept of ''animal.’ Such a pyramid 
is a particular case of the hierarchy of concepts in the general sense and is distinguished 
by the fact that each concept at level k is formed by joining a certain number of concepts 
at level k - 1. This is the case of very simply organized classifiers. In the general case 
classifiers can be organized any way one likes. The discriminators necessary to an animal 
are closer to a hierarchy based on complexity and subtlety of concepts, not generality. 

 
¾¾HOW THE HIERARCHY EMERGES 

LET US RETURN again to the evolution of the nervous system. Can a hierarchy of 
classifiers arise through evolution? It is apparent that it can, but on one condition: if the 
creation of each new level of the hierarchy and its subsequent expansion are useful to the 
animal in the struggle for existence. As animals with highly organized nervous systems 
do exist, we may conclude that such an expansion is useful. Moreover, studies of 
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primitive animals show that the systems of concepts their nervous systems are capable of 
recognizing are also very primitive. Consequently, we see for ourselves the usefulness of 
the lowest level of the hierarchy of classifiers.  

Let us sketch the path of development of the nervous system. In the initial stages we find 
that the animal has just a few receptors. The number of possible methods of 
interconnecting them (combinations) is relatively small and permits direct selection. The 
advantageous combination is found by the trial and error method. That an advantageous 
combination can exist even for a very small number of neurons can easily be seen in the 
following example. Suppose that there are just two light-sensitive receptors. If they are 
set on different sides of the body the information they yield (difference in illuminations) 
is sufficient for the animal to be able to move toward or away from the light. When an 
advantageous combination has been found and realized by means, we shall assume, of 
one intermediate neuron (such neurons are called associative), the entire group as a whole 
may be reproduced. In this way there arises a system of associative neurons which, for 
example, register differences between the illumination of receptors and sum these 
differences, as in Figure 2.3a. 

 

Figure 2.3. Simplest types of connections among receptors. 

Any part of a system of connected neurons may be reproduced, for example one or 
several receptors. In this way there arises a system of connections of the type shown in 
figure 2.3b. The diagrams of both types taken together form the first level of a hierarchy, 
based on the concepts of the sum and difference of illuminations. Because it is very 
important that animal movement be able to adjust to changes in illumination at a given 
point, we may assume that neurons capable of being triggered by changes in illumination 
must have appeared in the very early stages of evolution. They could have been either 
receptors or associative neurons connected to one or several receptors. In general, first-
level classifiers can be described as registers of the sum and differences of the stimuli of 
receptors in space and time. 

Having proven their usefulness for the animal, first-level classifiers become an 
established part of its capabilities in the struggle for existence. Then the next trial and 
error series begins: a small number of first-level classifiers (to be more precise, their 
output subsystems) are interconnected into one second-level trial classifier until a useful 
combination is obtained. Then the reproduction of this combination is useful. It may be 
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assumed that on the second level of the hierarchy (pertaining to the organs of sight) there 
appear such concepts as the boundary between light and shadow, the spot, the average 
illumination of a spot, and movement of the boundary between light and shadow. The 
successive levels of the hierarchy will arise in the same way. 

The scheme we have outlined leads one to think that any complex system which has 
arisen by the method of trial and error in the process of evolution should have a 
hierarchical organization. In fact, nature--unable to sort through all conceivable 
combinations of a large number of elements--selects combinations from a few elements. 
When it finds a useful combination, nature reproduces it and uses it (the whole of it) as an 
element to be tentatively connected with a small number of other similar elements. This 
is how the hierarchy arises. This concept plays an enormous role in cybernetics. In fact, 
any complex system, whether it has arisen naturally or been created by human beings, 
can be considered organized only if it is based on some kind of hierarchy or interweaving 
of several hierarchies. At least we do not yet know any organized systems that are 
arranged differently. 

 
¾¾SOME COMMENTS ON REAL HIERARCHIES 

THUS FAR our conclusions have been purely speculative. How do they standup against 
the actual structure of the nervous systems of animals and what can be said about the 
concepts of intermediate levels of a hierarchy which has actually emerged in the process 
of evolution?  

When comparing our schematic picture with reality the following must be considered. 
The division of a system of concepts into levels is not so unconditional as we have 
silently assumed. There may be cases where concepts on level K are used directly on 
level K + 2, bypassing level K + 1. In figure 2.2 we fitted such a possibility into the 
overall diagram by introducing classifiers which are connected to just one classifier of the 
preceding level and repeat its state; they are shown by the squares containing the x' s. In 
reality, of course, there are no such squares, which complicates the task of breaking the 
system up into levels. To continue, the hierarchy of classifiers shown in figure 2.2. has a 
clearly marked pyramidal character; at higher levels there are fewer classifiers and at the 
top level there is just one. Such a situation occurs when a system is extremely 
''purposeful,'' that is, when it serves some very narrow goal, some precisely determined 
method of classifying situations. In the example we have cited this was recognition of ' 
houses.’ And we saw that for such a system even irregular triangles and quadrangles 
proved to be ''meaningless''; they are not included in the hierarchy of concepts. To be 
more universal a system must resemble not one pyramid but many pyramids whose 
apexes are arranged at approximately the same level and form a set of concepts (more 
precisely, a set of systems of concepts) in whose terms control of the animal's actions 
takes place and which are ordinarily discovered during investigation of the animal's 
behavior. These concepts are said to form the basis of a definite ''image'' of the external 
world which takes shape in the mind of the animal (or person). The state of the classifiers 
at this level is direct information for the executive part of the nerve net (that is, in the end, 
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for the effectors). Each of these classifiers relies on a definite hierarchy of classifiers, a 
pyramid in which information moves as described above. But the pyramids may overlap 
in their middle parts (and they are known to overlap in the lower part, the receptors). 
Theoretically the total number of pyramid apexes may be as large as one likes, and 
specifically it may be much greater than the total number of receptors. This is the case in 
which the very same information delivered by the receptors is represented by a set of 
pyramids in a set of different forms figured for all cases in life. 

Let us note one other circumstance that should be taken into account in the search for 
hierarchy in a real nerve net. If we see a neuron connected by synapses with a hundred 
receptors, this by itself does not mean that the neuron fixes some simple first-level 
concept such as the total number of stimulated receptors. The logical function that relates 
the state of the neuron to the states of the receptors may be very complex and have its 
own hierarchical structure. 

 
¾¾THE WORLD THROUGH THE EYES OF A FROG 

FOUR SCIENTISTS from the Massachusetts Institute of Technology (J. Lettvinet al.) 
have written an article entitled ''What the Frog's Eye Tells the Frog’s Brain" which is 
extremely interesting for an investigation of the hierarchy of classifiers and concepts in 
relation to visual perception in animals.[3] The authors selected the frog as their test 
animal because its visual apparatus is relatively simple, and therefore convenient for 
study. Above all, the retina of the frog eye is homogeneous; unlike the human eye it does 
not have an area of increased sensitivity to which the most important part of the image 
must be projected. Therefore, the glance of the frog is immobile; it does not follow a 
moving object with its eyes the way we do. On the other hand, if a frog sitting on a water 
lily rocks with the motion of the plant, its eyes make the same movements, thus 
compensating for the rocking, so that the image of the external world on the retina 
remains immobile. Information is passed from the retina alone the visual nerve to the so-
called thalamus opticus of the brain. In this respect the frog is also simpler than the 
human being; the human being has two channels for transmitting information from the 
retina to the brain.  

Vision plays a large part in the life of the frog, enabling it to hunt and to protect itself 
from enemies. Study of frog behavior shows that the frog distinguishes its prey from its 
enemies by size and state of movement. Movement plays the decisive part here. Having 
spotted a small moving object (the size of an insect or worm) the frog will leap and 
capture it. The frog can be fooled by a small inedible object wiggled on a thread, but it 
will not pay the slightest attention to an immobile worm or insect and can starve to death 
in the middle of an abundance of such food if it is not mobile. The frog considers large 
moving objects to be enemies and flees from them.  

The retina of the frog's eye, like that of other vertebrates, has three layers of nerve cells. 
The outermost layer is formed by light sensitive receptors, the rods and cones. Under it is 
the layer of associative neurons of several types. Some of them (the biopolar cells) yield 
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primarily vertical axons along which stimulation is transmitted to deeper layers. The 
others (the horizontal or amacrine cells) connect neurons that are located on one level. 
The third, deepest layer is formed of the ganglion cells. Their dendrites receive 
information from the second-layer cells and the axons are long fibers that are interwoven 
to form the visual nerve, which connects the retina with the brain. These axons branch 
out, entering the thalamus opticus, and transmit information to the dendrites of the 
cerebral neurons.  

The eye of a frog has about 1 million receptors, about 3 million associative second-level 
neurons, and about 500,000 ganglion cells. Such a retinal structure gives reason to 
assume that analysis of the image begins in the eye of the animal and that the image is 
transmitted alone the visual nerve in terms of some intermediate concepts. It is as if the 
retina were a part of the brain moved to the periphery. This assumption is reinforced by 
the fact that the arrangement of the axons on the surface of the thalamus opticus 
coincides with the arrangement of the respective ganglion cells at the output of the retina-
-even though the fibers are interwoven a number of times along the course of the visual 
nerve and change their position in a cross-section of the nerve! Finally, the findings of 
embryology on development of the retina lead to the same conclusion. 

In the experiments we are describing a thin platinum electrode was applied to the visual 
nerve of a frog, making it possible to record stimulation of separate ganglion cells. The 
frog was placed in the center of an aluminum hemisphere, which was dull grey on the 
inside. Various dark objects such as rectangles, discs, and the like, were placed on the 
inside surface of the hemisphere; they were held in place by magnets set on the outside. 

The results of the experiments can be summarized as follows. 

Each ganglion cell has a definite receptive field, that is, a segment of the retina (set of 
receptors) from which it collects information. The state of receptors outside the receptive 
field has no effect on the state of the ganglion cell. The dimensions of receptive fields for 
cells of different types, if they are measured by the angle dimensions of the 
corresponding visible areas, vary from 2 degrees to 15 degrees in diameter. 

The ganglion cells are divided into four types depending on what process they record in 
their receptive field. 

1. Detectors of long-lasting contrast. These cells do not react to the switching on and off 
of general illumination, but if the edge of an object which is darker or lighter than the 
background appears in the receptive field the cell immediately begins to generate 
impulses. 

2. Detectors of convex edges. These cells are stimulated if a small (not more than three 
degrees) convex object appears in the receptive field. Maximum stimulation (frequency 
of impulses) is reached when the diameter of the object is approximately half of the 
diameter of the receptive field. The cell does not react to the straight edge of an object. 
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3. Detectors of moving edges. Their receptive fields are about 12 degrees in width. The 
cell reacts to any distinguishable edge of an object which is darker or lighter than the 
background, but only if it is moving. If a smoothly moving object five degrees in width 
passes over the field there are two reactions, to the front and rear edges. 

4. Detectors of darkening of the field. They send out a series of impulses if the total 
illumination of the receptive field is suddenly decreased. 

The arrangement of the ends of the visual fibers in the thalamus opticus is extremely 
interesting. We have already said that on a plane this arrangement coincides with the 
arrangement of the corresponding ganglion cells in the retina. In addition, it turns out that 
the ends of each type of fiber are set at a definite depth in the thalamus opticus, so that 
the frog brain has four layers of neurons that receive visual information. Each layer 
receives a copy of the retinal image--but in a certain aspect that corresponds to one of the 
four types of ganglion cells. These layers are the transmitters of information for the 
higher parts of the brain. 

Experiments such as those we have described are quite complex and disputes sometimes 
arise concerning their interpretation. The details of the described system may change or 
receive a different interpretation. Nonetheless, the general nature of the system of first 
level concepts has evidently been quite firmly established. We see a transition from point 
description to local description which takes account of the continuous structure of the 
image. The ganglion cells act as recognizers of such primary concepts as edge, 
convexness, and movement in relation to a definite area of the visible world. 

 
¾¾FRAGMENTS OF A SYSTEM OF CONCEPTS 

THE LOWEST-LEVEL concepts related to visual perception for a human being probably 
differ little from the concepts of a frog. In any case, the structure of the retina in 
mammals and in human beings is the same as in amphibians. 

The phenomenon of distortion of perception of an image stabilized on the retina gives 
some idea of the concepts of the subsequent levels of the hierarchy. This is a very 
interesting phenomenon. When a person looks at an immobile object, ''fixes'' it with his 
eyes, the eyeballs do not remain absolutely immobile; they make small involuntary 
movements. As a result the image of the object on the retina is constantly in motion, 
slowly drifting and jumping back to the point of maximum sensitivity. The image “marks 
time'' in the vicinity of this point. 

An image which is stabilized, not in continuous motion, can be created on the retina. To 
achieve this, the object must be rigidly connected to the eyeball and move along with it. 
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Figure 2.4. Device for stabilizing an image on the retina 

A contact lens with a small rod secured to it is placed on the eye. The rod holds a 
miniature optical projector[4] into which slides a few millimeters in size can be inserted. 
The test subject sees the image as remote to the point of infinity. The projector moves 
with the eye so the image on the retina is immobile. 

When the test subject is shown a stabilized image, for the first few seconds he perceives 
it as he would during normal vision, but then distortions begin. First the image disappears 
and is replaced by a grey or black background, then it reappears in parts or whole. 

That the stabilized image is perceived incorrectly is very remarkable in itself. Logically, 
there is no necessity for the image of an immobile object to move about the retina. Such 
movement produces no increase in the amount of information, and it becomes more 
difficult to process it. As a matter of fact, when similar problems arise in the area of 
engineering--for example when an image is transmitted by television or data are fed from 
a screen to a computer--special efforts are made to stabilize the image. But the human eye 
has not merely adapted to a jerking image; it simply refuses to receive an immobile one. 
This is evidence that the concepts related to movement, probably like those which we 
observed in the frog, are deeply rooted somewhere in the lower stages of the hierarchy, 
and if the corresponding classifiers are removed from the game correct information 
processing is disrupted. From the point of view of the designer of a complex device such 
as the eye (plus the data processing system) such an arrangement is strange. The designer 
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would certainly fill all the lower stages with static concepts and the description of object 
movement would be given in terms of the concepts of a higher level. But the hierarchy of 
visual concepts arose in the process of evolution. For our remote frog-like ancestors the 
concepts related to movement were extremely important and they had no time to wait for 
the development of complex static concepts. Therefore, primitive dynamic concepts arose 
in the very earliest stages of the development of the nervous system, and because nature 
uses the given units to carry out subsequent stages of building, these concepts became 
firmly established at the base of the hierarchy of concepts. For this reason, the human 
eyeball must constantly make brownian movements.  

Even more interesting is the way the image breaks up into parts (fragmentation). Simple 
figures, such as a lone segment, disappear and come back in toto. More complex figures 
sometimes disappear in toto and sometimes break into parts which disappear and 
reappear independent of one another. 

 

Figure 2.5. Fragmentation of a stabilized image. 

Fragmentation does not occur chaotically and it is not independent of the type of image, 
as is the case when a drawing on a chalkboard is erased with a rag; rather the 
fragmentation corresponds to the ''true'' structure of the image. We have put the word 
''true'' in quotation marks because fragmentation actually occurs in accordance with the 
structure of image perception by the eye-brain system. We do not know exactly what the 
mechanics of the distortion of perception in stabilization are; we know only that 
stabilization disables some component of the perception system. But from this too we can 
draw certain conclusions. 

Imagine that several important design elements have suddenly disappeared from an 
architectural structure. The building will fall down, but probably the pieces would be of 
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very different sizes. In one place you may see individual bricks and pieces of glass, while 
in another a part of the wall and roof may remain, and in still another place a whole 
corner of the building maybe intact. Perception of the stabilized image is approximately 
that kind of sight. It makes it possible to picture the nature of the concepts of a higher 
level (or higher levels) but not to evaluate their mutual relations and dependences. It 
should be noted that in the human being the personal experience of life, the learning (to 
speak in cybernetic language), plays a large part in shaping higher-level concepts. (This 
will be the next stage in evolution of the nervous system, so we are getting somewhat 
ahead of things here. For an investigation of the hierarchy of concepts, however, it is not 
very important whether the hierarchy were inherited or acquired through one's own 
labor.)  

Let us cite a few excerpts from the work mentioned above (footnote4). 

The figure of the human profile invariably fades and regenerates in meaningful units. The 
front of the face, the top of the head. The eye and ear come and go as recognizable 
entities, separately and in various combinations. In contrast, on first presentation a 
meaningless pattern of curlicues is described as extremely "active"; the individual 
elements fade and regenerate rapidly, and the subject sees almost every configuration that 
can be derived from the original figure. After prolonged viewing however, certain 
combinations of curlicues become dominant and these then disappear and reappear as 
units. The new reformed groupings persist for longer periods.  

Linear organization is emphasized by the fading of this target composed of rows of 
squares. The figure usually fades to leave one whole row visible: horizontal, diagonal, or 
vertical. In some cases a three-dimensional "waffle” effect is also noted.   

A random collection of dots will fade to leave only those dots which lie approximately in 
a line. . . . Lines act independently in stabilized vision, with breakage in the fading figure 
always at an intersection of lines. Adjacent or parallel lines may operate as units. . . In the 
case of figures drawn in solid tones as distinguished from those drawn in outline. . . the 
corner now replaces the line as the unit of independent action. A solid square will fade 
from its center, and the fading will obliterate first one and then another corner. Leaving 
the remaining corners sharply outlined and isolated in space. Regeneration 
correspondingly begins with the reappearance of first one and then another corner, 
yielding a complete or partial figure with the corners again sharply outlined. 

 
¾¾THE GOAL AND REGULATION 

WE HAVE DESCRIBED the first half of the action of a complex reflex, which consists 
of analyzing the situation by means of a hierarchy of classifiers. There are cases where 
the second half, the executive half, of the reflex is extremely simple and involves the 
stimulation of some local group of effectors--for example the effectors that activate a 
certain gland. These were precisely the conditions in which I. P. Pavlov set up most of his 
experiments, experiments which played an important part in the study of higher nerve 
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activity in animals and led to his widely known theory of unconditioned and conditioned 
reflexes. Elementary observations of animal behavior under natural conditions show, 
however, that this behavior cannot be reduced to a set of reflexes that are related only to 
the state of the environment. Every action of any complexity whatsoever consists of a 
sequence of simpler actions joined by a common goal. It often happens that individual 
components in this aggregate of actions are not simply useless but actually harmful to the 
animal if they are not accompanied by the other components. For example, it is necessary 
to fall back on the haunches before jumping and in order to grasp prey better it must be 
let go for an instant. The two phases of action, preliminary and executive, which we see 
in these examples cannot be the result of independent reflexes because the first action is 
senseless by itself and therefore could not have developed. 

When describing behavior the concepts of goal and regulation must be added to the 
concept of the reflex. A diagram of regulation is shown in figure 2.6.  

 

Figure 2.6. Diagram of a regulation. 

An action which the system is undertaking depends not only on the situation itself but 
also on the goal, that is, on the situation that the system is trying to achieve. The action of 
the system is determined by comparing the situation and the goal: the action is directed 
toward eliminating the discrepancy between the situation and the goal. The situation 
determines the action through the comparison block. The action exerts a reverse influence 
on the situation through change in the environment. This feedback loop is a typical 
feature of the regulation diagram and distinguishes it from the reflex diagram where the 
situation simply causes the action. 

 
¾¾HOW REGULATION EMERGES 

HOW COULD A SYSTEM organized according to the regulation diagram occurin the 
process of evolution? We have seen that the appearance of hierarchicallyorganized 
classifiers can be explained as a result of the combined actionof two basic evolutionary 
factors: replication of biological structuresand finding useful interconnections by the trial 
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and error method. Wouldn't the action of these factors cause the appearance of the 
regulation diagram? 

Being unable to rely on data concerning the actual evolutionary process that millions of 
years ago gave rise to a complex nervous system, we are forced to content ourselves with 
a purely hypothetical combinative structure which demonstrates the theoretical possibility 
of the occurrence of the regulation diagram. We shall make a systematic investigation of 
all possibilities to which replication and selection lead. It is natural to assume that in the 
process of replication relations are preserved within the subsystem being replicated, as 
are the subsystem's relations with those parts not replicated. We further assume that 
owing to their close proximity there is a relationship among newly evolved subsystems, 
which we shall depict in our diagrams with a dotted line. This relationship may either be 
reinforced or disappear. We shall begin with the simplest case--where we see just one 
nerve cell that is receptor and effector at the same time (figure 2.7a).  

 

Figure 2.7 

Here there is only one possibility of replication, and it leads to the appearance of two 
cells (figure 2.7 b). If one of them is closest to the surface and the other closer to the 
muscle cells, a division of labor between them is useful. This is how the receptor-effector 
diagram emerges (figure2.7 c).  

Now two avenues of replication are possible. Replication of the receptor yields the 
pattern shown in figure 2.7 d; after the disappearance of the dotted-line relationship, this 
becomes figure 2.7 e. A similar process generates the patterns in figures 2.7 f, g, and so 
on. In this way the zero level of the hierarchy (receptors) expands. 

The second avenue is replication of effectors (see figure 2.8).  

 

Figure 2.8 
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In figure 2.8 b, the stimulation of one receptor should be transmitted along two channels 
to two effectors. But we know that the electrical resistance of the synapses drops sharply 
after the first time a current passes along them. Therefore, if the stimulation is sent along 
one channel this communications channel will be reinforced while the other will be 
bypassed and may ''dry up'' (figure 2.8 c). Then the stimulation may make a way across 
the dotted-line relationship (figure 2.8 d), which marks the birth of the first level of the 
hierarchy of classifiers. 

 

 

 

Figure 2.9. 

 

Figure 2.9 shows possible variations of the development of the three-neuron diagram 
shown in figure 2.7 d. The diagrams correspond to replication of different subsystems of 
the initial system. The subsystem which is replicated has been circled. Figures 2.9 a-c 
explain the expansion of the zero level, while figures 2.9 d-f show the expansion of the 
first two levels of the hierarchy of classifiers. In the remainder we see patterns that occur 
where one first-level classifier is replicated without a receptor connected to it. The 
transition from figure 2.9 h to 2.9 i is explained by that ''drying up'' of the bypass channel 
we described above. Figure 2.9 j, the final development, differs substantially from all the 
other figures that represent hierarchies of classifiers. In this figure, one of the classifiers 
is ''hanging in the air''; it does not receive information from the external world. Can such 
a diagram be useful to an animal'? It certainly can, for this is the regulation diagram!  

As an example we can suggest the following embodiment of figure 2.9j. Let us consider a 
certain hypothetical animal which lives in the sea. Suppose R is a receptor which 
perceives the temperature of the environment. Classifier A also records the temperature of 
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the water by change in the frequency of stimulation impulses. Suppose that greater or less 
stimulation of effector E causes expansion or contraction of the animal's shell, which 
results in a change in its volume; the animal either rises toward the surface of the sea or 
descends deeper. And suppose that there is some definite temperature, perhaps 16deg. C 
(61deg. F) which is most suitable for our animal. The neuron Z (the goal fixer) should 
maintain a certain frequency of impulses equal to the frequency of neuron A at a 
temperature of 16deg. Effector E should register the difference of stimulation of neurons 
A and Z and in conformity with it, raise the animal toward the surface where the water is 
warmer or immerse it to deeper, cooler water layers. Such an adaptation would be 
extremely helpful to our imaginary animal. 

 
¾¾REPRESENTATIONS 

REPLICATION of the various subsystems of the nerve net can give rise to many 
different groups of classifiers which ''hang in the air." Among them may be copies of 
whole steps of the hierarchy whose states correspond exactly to the states of those 
''informed'' classifiers which receive information from the receptors. They correspond but 
they do not coincide. We saw this in the example of neurons A and Z in figure 2.9j. In 
complex systems the uninformed copies of informed classifiers may store a large amount 
of information. We shall call the states of these copies representations, fully aware that in 
this way we are giving a definite cybernetic interpretation to this psychological concept. 
It is obvious that there is a close relationship between representations and situations. 
which are really nothing but the states of analogous classifiers, but ones receiving 
information from the receptors. The goal is a particular case of the representation, or 
more precisely, it is that case where the comparison between a constant representation 
and a changing situation is used to work out an action that brings them closer to one 
another. The hypothetical animal described above loves a temperature of 16deg. and the 
"lucid image" of this wonderful situation, which is a certain frequency of impulses of 
neuron A, lives in its memory in the form of precisely that frequency of pulses of neuron 
Z.  

This is a very primitive representation. The more highly organized the ''informed'' part of 
the nervous system is, the more complex its duplicates will be (we shall call them 
representation fixers), and the more varied the representations will be. Because classifiers 
can belong to different levels of the hierarchy and the situation can be expressed in 
different systems of concepts, representations can also differ by their "concept language'' 
because they can be the states of fixers of different levels. Furthermore, the degree of 
stability of the states of the representation fixers can also vary greatly. Therefore, 
representations differ substantially in their concreteness and stability. They may be exact 
and concrete, almost perceptible to the sensors. The extreme case of this is the 
hallucination, which is perceived subjectively as reality and to which the organism 
responds in the same way as it would to the corresponding situation. On the other hand, 
representations may be very approximate, as a result of both their instability and their 
abstraction. The latter case is often encountered in artistic and scientific creative work 
where a representation acts as the goal of activity. The human being is dimly aware of 
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what he needs and tries to embody it in solid, object form. For a long time nothing comes 
of it because his representations do not have the necessary concreteness. But then, at one 
fine moment (and this is really a fine moment!) he suddenly achieves his goal and 
realizes clearly that he has done precisely what he wanted. 

 
¾¾MEMORY 

IN PRINCIPLE. as many representation fixers as desired can be obtained by replication. 
But a question arises here: how many does an animal need? How many copies of 
"informed" classifiers are needed? One? Two? Ten? It follows from general 
considerations that many copies are needed. After all, representation fixers serve to 
organize experience and behavior in time. The goal fixer stores the situation which, 
according to the idea, should be realized in the future. Other fixers can store situations 
which have actually occurred in the past. The temporal organization of experience is 
essential to an animal which is striving to adapt to the environment in which it lives, for 
this environment reveals certain rules, that is, correlations between past, present, and 
future situations. We may predict that after a certain initial increase in the number of 
receptors the further refinement of the nervous system will require the creation of 
representation fixers, and a large number of them. There is no reason to continue to 
increase the number of receptors and classifiers and thus improve the "instantaneous 
snapshots'' of the environment if the system is not able to detect correlations among them. 
But the detection of correlations among the ''instantaneous snapshots'' requires that they 
be stored somewhere. This is how representation fixers, which in other words are 
memory, arise. The storage of the goal in the process of regulation is the simplest case of 
the use of memory. 

 
¾¾THE HIERARCHY OF GOALS AND PLANS 

IN THE REGULATION DIAGRAM in figure 2.5 the goal is shown as something 
unified. But we know very well that many goals are complex, and while working toward 
them a system sets intermediate goals. We have already cited the examples of two-phase 
movement: to jump onto a chair, a cat first settles back on its haunches and then springs 
up. In more complex cases the goals form a hierarchy consisting of numerous levels. Let 
us suppose that you set the goal of traveling from home to work. This is your highest goal 
at the particular moment. We shall assign it the index (level number) 0. To travel to work 
you must leave the building, walk to the bus stop, ride to the necessary stop, and so on. 
These are goals with an index of --1. To leave the building you must leave the apartment, 
take the elevator down, and go out the entrance. These are goals with an index of --2. To 
take the elevator down you must open the door, enter the elevator, and so on; this is index 
--3. To open the elevator door you must reach your hand out to the handle, grasp it, and 
pull it toward you; this is index --4. These goals may perhaps be considered elementary. 

The goal and a statement of how it is to be achieved--that is, a break down into 
subordinate goals--is called a plan of action. Our example is in fact a description of a 
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plan for traveling to work. The goal itself, which in this case is the representation ''me--at 
my work place,'' does not have any hierarchical structure. The primary logical unit that 
forms the hierarchy is the plan, but the goals form a hierarchy only to the extent that they 
are elements of the plan.  

In their book Plans and the Structure of Behavior American psychologists G. Miller, E. 
Galanter, and K. Pribram take the concept of the plan as the basis for describing the 
behavior of humans and animals. They show that such an approach is both sound and 
useful. Unlike the classical reflex arc (without feedback) the logical unit of behavior 
description used by the authors contains a feedback loop.  

 

 

 

Figure 2.10. T-O-T-E. Test-operate-test-exit unit. 

They call this unit the Test-Operate-Test-Exit diagram (T-O-T-E—based on the first 
letters of the English words ''test,'' ''operate,'' ''test,'' "exit.") The test here means a test of 
correspondence between the situation and the goal. If there is no correspondence an 
operation is performed, but if there is correspondence the plan is considered performed 
and the system goes to ''exit." 

 

Figure 2.11. Driving a nail. 
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As an example, figure 2.11 shows a plan for driving a nail into a board; the plan is 
represented in the form of a T-O-T-E unit. The T-O-T-E diagram in figure 2.10 shows the 
same phenomenon of regulation that was depicted in figure 2.6. The difference is in the 
method of depiction. The diagram in figure 2.6 is structural while in figure 2.10 it is 
functional. We shall explain these concepts, and at the same time we shall define the 
concept of control more precisely. 

 
¾STRUCTURAL AND FUNCTIONAL DIAGRAMS 

A STRUCTURAL DIAGRAM of a cybernetic system shows the subsystems which make 
up the particular system and often also indicates the directions of information flows 
among the subsystems. Then the structural diagram becomes a graph. In mathematics the 
term graph is used for a system of points (the vertices of the graph), some of which are 
connected by lines(arcs). The graph is oriented if a definite direction is indicated on each 
arc. A structural diagram with an indication of information flows is a directed graph 
whose vertices depict the subsystems while the arcs are the information flows. 

This description of a cybernetic system is not the only possible one. Often we are 
interested not so much in the structure of a system as in its functioning. Even more often 
we are simply unable to say anything sensible about the structure, but there are some 
things we can say about the function.  In such cases a functional diagram may be 
constructed. It is also a directed graph, but in it the vertices represent different sets of 
states of the system and the arcs are possible transitions between states. An arc connects 
to vertices in the direction from the first to the second in the case where there is a 
possibility of transition from at least one state relating to the first vertex into another state 
relating to the second vertex. We shall also call the sets of states generalized states. 
Therefore, the arc in a diagram shows the possibility of a transition from one generalized 
state to another. Whereas a structural diagram primarily reflects the spatial aspect, the 
functional diagram stresses the temporal aspect. Formally, according to the definition 
given above, the functional diagram does not reflect the spatial aspect (division of the 
system into subsystems) at all. As a rule, however, the division into subsystems is 
reflected in the method of defining generalized states, that is, the division of the set of all 
states of the system into subsets which are ''assigned'' to different vertexes of the graph. 
Let us review this using the example of the system whose structural diagram is shown in 
figure 2.12. This is a control diagram.  

 



  

 51

 

Figure 2.12. Structural diagram of control. 

One of the subsystems, which is called the control device, receives information from 
''working" subsystems A1, A2,A3, . . . , processes it, and sends orders (control information) 
to subsystems A1, A2,A3, . . ., as a result of which these subsystems change their state. It 
must be noted that, strictly speaking, any information received by the system changes its 
state. Information is called control information when it changes certain distinct 
parameters of the system which are identified as ''primary,'' ''external,'' ''observed,'' and 
the like.  

Often the control unit is small in terms of information-capacity and serves only to switch 
information flows, while the real processing of data and development of orders is done by 
one of the subsystems, or according to information stored in it. Then it is said that control 
is passed to this subsystem. That is how it is done, specifically, in a computer where 
subsystems A1, A2, A3,. . . are the cells of operational memory. Some of the cells contain 
''passive' information (for example numbers), while others contain orders (instructions). 
When control is in the cell which contains an instruction the control unit performs this 
instruction. Then it passes control to the next cell, and so on.  

The functional diagram for systems with transfer of control is constructed as follows. To 
each vertex of the graph is juxtaposed one of the subsystem Ai and the set of all states of 
the system when control is in the particular subsystem. Then the arcs (arrows) signify the 
transfer of control from one subsystem to another.  

 

Figure 2.13.  Functional diagram of transfer of control. 
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Even where each successive state is fully determined by the preceding one there may be 
branching on such a diagram because each vertex corresponds to a vast number of states 
and the transfer of control can depend on the state of the control unit or the subsystem in 
which control is located. Functional diagrams are often drawn in generalized form, 
omitting certain inconsequential details and steps. It may then turn out that the path by 
which control branches depends on the state of several different subsystems. The 
condition on which this switch is made is ordinarily written alongside the arrow. The 
diagram shown in figure 2.10 can he understood in precisely this sense. Then it will he 
assumed that the system has two subsystems, a test block and an operation-execution 
block, and control passes from one to the other in conformity with the arrows. The 
system can also have other subsystems ( in this case the environment), but they never 
receive control and therefore are not shown in the diagram (to be more precise, those 
moments when the environment changes the state of the system or changes its own state 
when acted upon by the system are included in the process of action of one of the blocks). 

We can move even further from the structural diagram. Switching control to a certain 
subsystem means activating it, but there can be cases where we do not know exactly 
which subsystem is responsible for a particular observed action. Then we shall equate the 
vertices of the graph with the actions as such and the arcs will signify the transition from 
one action to another. The concept of ''action as such,'' if strictly defined, must be equated 
with the concept of ''generalized state'' (''set of states'') and this returns us to the first, 
most abstract definition of the functional diagram. In fact, when we say that a dog ''runs," 
''barks," or" wags his tail,'' a set of concrete states of the dog fits each of these definitions. 
Of course one is struck by a discrepancy, ''state'' is something static, but ''action'' is 
plainly something dynamic, closer to a change of state than a state itself. If a photograph 
shows a dog's tail not leaving the plane of symmetry, we still do not know whether the 
dog is wagging it or holding it still. We overcome such contradictions by noting that the 
concept of state includes not only quantities of the type "position,'' but also quantities 
such as ''velocity,'' ''acceleration,'' and the like. Specifically, a description of the state of 
the dog includes an indication of the tension of its tail muscles and the stimulation of all 
neurons which regulate the state of the muscles. 

 
¾THE TRANSITION TO PHENOMENOLOGICAL 
DESCRIPTIONS 

THEREFORE In the functional diagram an action is, formally speaking, a set of states. 
But to say that a particular action is some set is to say virtually nothing. This set must he 
defined. And if we do not know the structure of the system and its method of functioning 
it is practically impossible to do this with precision. We must he content with an 
incomplete phenomenological definition based on externally manifested consequences of 
internal states. It is this kind of functional diagram, with more or less exactly defined 
actions at the vertices of the graph, that is used to describe the behavior of complex 
systems whose organization is unknown—such as humans and animals. The diagrams in 
figures 2.10 and 2.11 are, of course, such diagrams. The phenomenological approach to 
brain activity can be carried out by two sciences: psychology and behavioristics (the 
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study of behavior). The former is based on subjective observations and the latter on 
objective ones. They are closely connected and are often combined under the general 
name of psychology.  

Because the operational component of the T-O-T-E unit may be composite, requiring the 
performance of several subordinate plans, T-O-T-E units can have hierarchical structure. 
Miller, Galatier, and Pribram give the following example. If a hammer striking a nail is 
represented as a two-phase action consisting of raising and lowering the hammer, then the 
functional diagram in figure 2.11 which depicts a plan for driving a nail, becomes the 
diagram shown in figure 2.14.  

 

Figure 2.14. Hierarchical plan for driving a nail. 

In its turn, this diagram can become an element of the operational component of a T-O-T-
E diagram on a higher level. 

We have seen that the elementary structural diagram of figure 2.6 corresponds to the 
elementary functional diagram in figure 2.9. When plans make up the hierarchy, what 
happens to the structural diagram? Or, reversing the statement to be more precise, what 
structural diagrams can ensure execution of a hierarchically constructed plan'? 

Different variants of such diagrams may be suggested. For example. It can be imagined 
that there is always one comparison block and that the same subsystem which stores the 
goal is always used, but the state of this subsystem (that is, the goal) changes under the 
influence of other parts of the system, ensuring an alternation of goals that follows the 
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plan. By contrast, it may be imagined that the comparison block-goal pair is reproduced 
many times and during execution of a hierarchical plan, control passes from one pair to 
the other. A combination of these two methods maybe proposed and, in general, we can 
think up many differently organized cybernetic devices that carry out the same 
hierarchical functional diagrams. All that is clear is that they will have a hierarchical 
structure and that devices of this type can arise through evolution by the replication of 
subsystems and selection of useful variants.  

But what kind of structural diagrams actually appear in the process of evolution? 
Unfortunately, we cannot yet be certain. That is why we had to switch to functional 
diagrams. This is just the first limitation we shall be forced to impose on our striving for a 
precise cybernetic description of higher nervous activity. At the present time we know 
very little about the cybernetic structure and functioning of the brains of higher animals, 
especially of the human being. Properly speaking, we know virtually nothing. We have 
only certain facts and assumptions. In our further analysis, therefore, we shall have to 
rely on phenomenology, the findings of behavioristics and psychology, where things are 
somewhat better. As for the cybernetic aspect, we shall move to the level of extremely 
general concepts, where we shall find certain rules so general that they explain the stages 
of development of both the nervous system and human culture, in particular science. The 
relatively concrete cybernetic analysis of the first stages of evolution of the nervous 
system, which is possible thanks to the present state of knowledge, will serve as a 
running start for the subsequent, more abstract analysis. Of course, our real goal is 
precisely this abstract analysis, but it would be more satisfying if knowing more about the 
cybernetics of the brain, we were able to make the transition from the concrete to the 
abstract in a more smooth and well-substantiated manner. 

 
¾¾DEFINITION OF THE COMPLEX REFLEX 

SUMMARIZING our description of the fourth stage in the development of the nervous 
system we can define the complex reflex as that process where stimulation of receptors 
caused by interaction with the environment is passed along the nerve net and is converted 
by it, thus activating a definite plan of action that immediately begins to be executed. In 
this diagram of behavior all feedbacks between the organism and the environment are 
realized in the process of regulation of actions by the plan, while overall interaction 
between the environment and the organism is described by the classical stimulus response 
formula. Only now the response means activation of a particular plan. 

 

Footnotes: 

[1] Later we shall give a somewhat more general definition of the concept and a set of 
situations shall be called an Aristotelian concept. At present we shall drop the adjective 
''Aristotelian’ for brevity. 



  

 55

[2] According to the terminology accepted by many logicians, juxtaposing abstract 
concepts to concrete concepts is not at all the same as juxtaposing general concepts to 
particular ones. 

[3] See the Russian translation in the collection of articles entitled Elekronikai 
kibernetika v biologii i meditsine (Electronics and Cybernetics in Biology and Medicine), 
Foreign Literature Publishing House, Moscow, 1963. [Original Lettvin et al., Proc. IRE , 
47, 1940-1951 (1959, # 11 )]. 

[4] See R. Pritchard, "Images on the Retina and Visual Perception,” in the collection of 
articles Problemy bioniki (Problems of Bionics), Mir Publishing House, 1965. [Original 
in English Stabilized Images on the Retina. Scientific American 204 no. 41 (June 1961): 
72-78.  

 



  

 56

CHAPTER THREE 
 

On The Path Toward The Human Being 
 

¾¾THE METASYSTEM TRANSITION 

SUBSEQUENT STAGES in the development of the nervous system will be described as 
stated above, on a more phenomenological level. For this we must summarize the results 
of our investigation of the mechanism of evolution in the early stages, using the 
terminology of general cybernetic concepts. Having begun to think in this direction, we 
shall easily detect one general characteristic of transitions from lower to higher stages: In 
each stage the biological system has a subsystem which may be called the highest 
controlling device; this is the subsystem which originated most recently and has the 
highest level of organisation. The transition to the next stage occurs by multiplication of 
such systems (multiple replication) and integration of them--by joining them into a single 
whole with the formation (by the trial and error method) of a control system headed by a 
new subsystem, which now becomes the highest controlling device in the new stage of 
evolution. We shall call the system made up of control subsystem X and the many 
homogeneous subsystems A1, A2, A3 . . . controlled by it a metasystem in relation to 
systems A1, A2, A3 . . . Therefore we shall call the transition from one stage to the next the 
metasystem transition.  

 

Figure3.1. The metasystem transition 

This concept will play a crucial part in our subsequent presentation. The metasystem 
transition creates a higher level of organization, the metalevel in relation to the level of 
organization of the subsystems being integrated.  

From the functional point of view the metasystem transition is the case where the activity 
αα , which is characteristic of the top control system at a lower stage, becomes controlled 
at the higher stage and there appears a qualitatively new, higher, type of activity ββ  which 
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controls the activity αα . Replication and selection bring about the creation of the necessary 
structures.  

The first metasystem transition we discern in the history of animals is the appearance of 
movement. The integrated subsystems are the parts of the cell that ensure metabolism and 
reproduction. The position of these parts in space is random and uncontrolled until, at a 
certain time, there appear organs that connect separate parts of the cell and put them into 
motion: cell membranes, cilia, flagella. A metasystem transition occurs which may be 
defined by the formula:  

control of position = movement. 

In this stage movement is uncontrolled and not correlated in any way with the state of the 
environment. Nature's next task is to control it. To control motion means to make it a 
definite function of the state of the environment. This leads to irritability. Irritability 
occurs when--under the influence of external factors--there is a change in the state of 
some segments of the cell, and when this change spreads to other sectors--specifically 
those which ensure movement. Thus, the formula for the metasystem transition from the 
second stage to the third is:  

   Chemical Era 1. Chemical foundations of life 

 2 Movement 

 3 Irritability (simple reflex) 

Cybernetic Era  

 4 Nerve net (complex reflex) 

 5 Associating (conditioned reflex) 

Figure 3.2.  Stages in the evolution of life before the era of reason. 

control of movement = irritability. 

The integration of cells with formation of the multicellular organism is also a transition 
from a system to a metasystem. But this transition concerns the structural aspect 
exclusively and is not describable in functional terms. From a functional point of view it 
is ultimately unimportant whether reproduction and integration of a certain part  of the 
organism occur or whether organisms are integrated as whole units. This is a technical 
question, so to speak. Irritability is already manifested in unicellular organisms, but it 
reveals its capabilities fully after cell integration.  

An important characteristic of the metasystem transition must be pointed out here. When 
the subsystems being integrated are joined into a metasystem, specialization occurs; the 
subsystems become adapted to a particular activity and lose their capability for other 
types of activity. Specialization is seen particularly clearly where whole organisms are 
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integrated. Each subsystem being integrated in this case contains a great deal which is 
''superfluous''--functions necessary for independent life but useless in the community, 
where other subsystems perform these functions. Thus, specialized muscle and nerve 
cells appear in the multicellular organism.  

In general we must note that the integration of subsystems is by no means the end of their 
evolutionary development. We must not imagine that systems A1, A2, A3, . . . are 
reproduced in large numbers after which the control device X suddenly arises ''above 
them." On the contrary, the rudiments of the control system form when the number of 
subsystems Ai is still quite small. As we saw above, this is the only way the trial and error 
method can operate. But after control subsystem X has formed, there is a massive 
replication of subsystems Ai and during this process both Ai and X are refined. The 
appearance of the structure for control of subsystems Ai does not conclude rapid growth 
in the number of subsystems Ai; rather, it precedes and causes this growth because it 
makes multiplication of Ai useful to the organism. The carrier of a definite level of 
organization branches out only after the new, higher level begins to form. This 
characteristic can be called the law of branching growth of the penultimate level. In the 
phenomenological functional description, therefore, the metasystem transition does not 
appear immediately after the establishment of a new level; it appears somewhat later, 
after the penultimate level has branched out. The metasystem transition always involves 
two levels of organization.  

Let us continue our survey of the stages of evolution. We shall apply the principle of the 
metasystem transition to the level of irritability. At this level, stimulation of certain 
sectors of a unicellular organism or a specialized nerve cell in a multicellular organism 
occurs directly from the external environment, and this stimulation causes direct (one-to-
one) stimulation of muscular activity. What can control of irritability signify? 
Apparently, creation of a nerve net whose elements, specifically the effectors, are not 
stimulated by the environment directly but rather through the mediation of a complex 
control system. This is the stage of evolution we related to the concept of the complex 
reflex. The control of irritability in this stage is seen especially clearly in the fact that 
where there is a goal, stimulation of the effectors depends not only on the state of the 
environment but also upon this goal--that is, on the state of certain internal neurons of the 
net. Thus, the formula for this metasystem transition (from the third stage to the fourth) 
is: 

control of irritability = complex reflex. 

What next'?  

 
¾¾CONTROL OF THE REFLEX 

NO MATTER how highly refined the nerve net built on the principle of the complex 
reflex may be, it has one fundamental shortcoming: the invariability of its functioning 
over time. The animal with such a nervous system cannot extract anything from its 
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experience; its reactions will always be the same and its actions will always be executed 
according to the same plan. If the animal is to be able to learn, its nervous system must 
contain some variable components which ensure change in the relations among situations 
and actions. These components will therefore carry out control of reflexes. It is 
commonly known that animals have the ability to learn and develop new reflexes. In the 
terminology introduced by I. P. Pavlov, the inborn reflex included in the nervous system 
by nature is called an unconditioned reflex while a reflex developed under the influence 
of the environment is called a conditioned reflex. When we speak of a complex reflex we 
have in mind, of course, an unconditioned complex reflex. The presence of components 
that control complex reflexes manifests itself, in experiments with teaching animals, as 
the ability to form conditioned reflexes.  

We cannot, however, equate the concept of the conditioned reflex with the concept of 
control of a reflex. The latter concept is broader. After all, our concept of the complex 
reflex, taken in the context of the description of general principles of the evolution of the 
nervous system, essentially signifies any fixed connection between the states of 
classifiers, representation fixers, and effectors. Therefore, control of reflexes must be 
understood as the creation, growing out of individual experience, of any variable 
connections among these objects. Such connections are called associations of 
representations or simply associations. The term ''representation" here is understood in 
the broad sense as the state of any subsystems of the brain, in particular the classifiers 
and effectors. We shall call the formation of associations associating (this terminology is 
somewhat awkward, but it is precise). Thus, the fifth stage of evolution is the stage of 
associations. The formula for the metasystem transition to this stage is:  

control of reflexes = associating. 

 
¾¾THE REFLEX AS A FUNCTIONAL CONCEPT 

THE CONCEPTS of the reflex and the association are functional not structural concepts. 
The connection between stimulus S and response R in the reflex (see figure 3.3) does not 
represent the transmission of information from one subsystem to another, it is a transition 
from one generalized state to another. This distinction is essential to avoid confusing the 
reflex, as a definite functional diagram which describes behavior, with the embodiment of 
this diagram, that is, with the cybernetic device that reveals this diagram of behavior.  

 

Figure 3.3.  Functional diagram of the unconditioned reflex 

Confusion can easily arise, because the simplest embodiment of reflex behavior has a 
structural diagram that coincides externally with the diagram shown in figure 3.3, except 
that S and R in it must be understood as physical subsystems that fix the stimulus and 
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response. This coincidence is not entirely accidental. As we have already said in defining 
the functional diagram, breaking the set of all states of the system down into subsets 
which are ascribed to vertices of the graph is closely tied to breaking the system down 
into subsystems. Specifically, each subsystem that can be in two states (yes/no) can be 
related to the set of all states of the system as a whole for which this system is in a 
definite state, for example ''yes.'' More simply, when defining the generalised state we 
consider only the state of the given subsystem, paying no attention to what is happening 
with the other subsystems. Let us assume that the letters S and R signify precisely these 
subsystems, that is to say, subsystem S is the discriminator for stimulus (set of situations) 
S and subsystem R is the effector that evokes response R. Then the statement that ''yes'' in 
subsystem S is transmitted along a communications channel (arrow) to subsystem R, 
putting it also in the ''yes'' state, coincides with the statement that the ,generalised state S 
switches (arrow) to state R. Thus the structural and functional diagrams are very similar. 
It is true that the structural diagram in no way reflects the fact that ''yes'' evokes a ''yes" 
not a "no,'' whereas this is the very essence of the reflex. As we have already said, the 
reflex is a functional concept.  

 
¾¾WHY ASSOCIATIONS OF REPRESENTATIONS ARE 
NEEDED 

THESE PRELIMINARY considerations were required in order for us to be able to better 
grasp the concept of association and the connection between a functional description 
using associations and a structural description by means of classifiers. Because each 
classifier can be connected to one or several generalized states, there is a hierarchy of 
generalized states corresponding to the hierarchy of classifiers. When introducing the 
concept of the classifier we pointed out that for each state of the classifier (we can now 
say for each generalized state of the system as a whole) there is a corresponding, definite 
concept at the input of the system--that is, the input situation is affiliated with a definite 
set. The concepts of the Aristotelian ''concept'' and the ''generalized state'' are close to one 
another; both are sets of states. But the "generalised state'' is a more general concept and 
may take account of the state not just of receptors but also of any other subsystems, in 
particular classifiers. This is essential to follow the dynamics of the state of the system 
during the process of information processing.  

Let us see how the generalized states of the K level of the hierarchy and the next level, K 
+ 1, are interconnected. As we know, the chief task of the classifiers is to store 
''significant'' information and discard ''insignificant'' information. This means that there is 
some set of states on level K which in the functional diagram has an arrow going from 
each of the states to the same state at level K + 1. In figure 3.4 below, the representations 
(generalized states) T1 andT2 evoke representation U equally.  
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Figure 3.4. Association of representations 

If T1and T2 always accompany one another this diagram will unquestionably be 
advantageous to the animal. He does not have to know that T1 and T2 are occurring; it is 
enough if he knows that U is occurring. In this way superfluous information is discarded 
and useful information is compressed. The compression of information is possible 
because T1 andT2 are always encountered together. This is a fact which is external to the 
nervous system and refers only to the stream of situations being fed to it. It testifies to the 
existence of a definite organization in the stream of situations, which is a consequence of 
the organized nature of the environment surrounding the animal. The organization of the 
nervous system and its activity (the system of reflexes) reflect characteristics of the 
environment. This happens because, by testing different ways to discard information, 
nature finally finds the variation where the information discarded is indeed superfluous 
and unnecessary owing to the partially organized nature of the environment.  

In the stage of the unconditioned reflex the structure of such connections, as shown in 
figure 3.4, does not change during the life of the animal and is the same for all animals of 
the given species. As we have already said, however, such a situation is not satisfactory. 
The metasystem transition occurs, and the connections between generalized states 
become controlled. Now if T1 andT2 in the individual experience of the animal always (or 
at least quite often) accompany one another, new connections form in the animal brain 
which are not determined uniquely by heredity. This is associating--the formation of a 
new association of representations. It is clear that associations form among 
representations of the highest level of the hierarchy. Thus, the most general correlations 
in the environment, those which are the same for all times and all places of habitation, are 
reflected in the permanent organization of the lower levels of classifiers. The more 
particular correlations are reflected by variable connections at the highest level.  

 
¾¾EVOCATION BY COMPLEMENT 

THE DIAGRAM shown in figure 3.4 may cause misunderstanding. When speaking of an 
association of representations we usually mean something like a two-way connection 
between T1 and T2, where T1 evokes T2 and T2 evokes T1. But in our diagram both 
representations evoke something different, specifically U, and there are no feedback 
arrows from U to T1 and T2.  

In fact, the diagram shown in figure 3.4 more closely corresponds to the concept of the 
association of representations than a diagram with feedback does. Specifically, it contains 
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an evocation, in a certain sense, of representation T2 by representation T1 (and vice versa), 
but this is evocation by complement. The representation U contains both T2 and T1; after 
all, it was conceived by our nervous system as equivalent to the simultaneous presence of 
T2 and T1. Therefore, when T1 evokes U in the absence of T2, then T2 is contained 
concealed in U itself. By evoking U we, so to speak, complement T1 with the nonexistent 
T2.  

This process of mental complementing is in no way related to the fact that the association 
is developed by learning. Only the method by which the brain processes information 
plays a part here. When inborn lower-level mechanisms operate the effect of the 
complementing shows itself even more clearly; no kind of learning or training will 
weaken or strengthen it.  

 

Figure 3.5. The points make a line. 

Look at figure 3.5. In it you see not just points but also a line, an arc. In fact there is no 
line at all. But you mentally supplement (complement) the drawing with points so that a 
solid line is formed. In terms of figure 3.4, T1 here is the actually existing points, U is the 
line, and T2 is the complementary points. The fact that you discern a nonexistent line 
testifies to the presence in the brain (or in the retina) of classifiers which create the 
representation of U.  

Why did these classifiers arise? Because the situations arriving at the input of our visual 
apparatus possess the characteristic of continuity. The illuminations of neighboring 
receptors of the retina are strongly correlated. The image on the retina is not a mosaic set 
of points, it is a set of light spots. Therefore, translating the image into the language of 
spots, the brain (we say ''brain'' arbitrarily, not going into the question of where the 
translation is in fact made) rejects useless information and stores useful information. 
Because ''consisting of spots'' is a universal characteristic of images on the retina, the 
language of spots must be located at one of the lowest levels and it must be inborn. The 
line which we "see" in figure 3.5 is a long, narrow spot.  

 
¾¾SPOTS AND LINES 

NOTICE, we have reduced the concept of the line to the concept of the spot. We had to 
do this because we were establishing the theoretical basis for the existence of the 
corresponding classifiers. In reality, it is possible to conclude from the two-dimensional 
continuity of the image on the retina that the basic concept for the brain should be the 
concept of the spot, not the line. The line can be included as either an exotically shaped 
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spot or as the boundary between spots. This theoretical consideration is confirmed by 
numerous observations.  

 

Figure 3.6.  Concealed circle formed by the vertices of angles 

A circle formed by the vertices of angles is clearly seen in figure 3.6 a. In figure 3.6 b the 
vertices of the angles are located at exactly the same points, but their sides are directed 
every which way, some outside and some inside. As a result the circle disappears. It is 
possible to follow the vertices along, switching attention from one to another, and 
ascertain that they are set in a circle, but you cannot see this as you can in the first 
drawing, even though the points which make up the circle are all vertices of angles and 
all lie on the circumference of the circle. The simplest machine program for recognizing 
circles would "see'' the circle in figure 3.6 b (as well as figure 3.6 a). But our eye does not 
see it. In figure 3.6 a, where all the rays are directed out, however, our eye glosses them 
into something like a rim and clearly sees the internal circle, a two-dimensional 
formation, a spot. The circumference, the boundary of this spot, also becomes visible.  

There are many visual illusions resulting from the fact that we ''see in spots.'' They offer 
instructive examples of inborn associations. One of the best ones is shown in figure 3.7.  

 

Figure 3.7.  The illusion of the approximation of diagonals. 

Figure 3.7a is a square, and its diagonals intersect at right angles. Figure 3.7 b is 
constructed of arcs, but its vertices form precisely the same square as in figure 3.7 a. and 
therefore the diagonals also intersect at right angles. This is almost impossible to believe, 
so great is the illusion that the diagonals of figure 3.7 b are approximated to the vertical. 
This illusion may be explained by the fact that alongside the microcharacteristics of the 
figure--that is, the details of its shape--we always perceive its macrocharacteristics, its 
overall appearance. The overall appearance of figure 3.7 b is that of a spot which is 
elongated on the vertical. The degree of elongation may be judged by figure 3.7 c. This 
figure is a rectangle whose area is equal to the area of figures 3.7 a and b, while the ratio 
of its width to its height is equal to the ratio of the average width of figure 3.7 b to its 
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average height. The hypothetical classifier which records the overall elongation of the 
figure will arrive at the same state in contemplating figure 3.7 b as in contemplating 
figure 3.7 c. In other words, whether we desire it or not, figure 3.7 b is associated in our 
mind with the rectangle in figure 3.7 c. Following the diagonals in figure 3.7 b in our 
mind, we equate them with the diagonals of figure 3.7 c, which form acute vertical 
angles. The classifier that records elongation of the spot is unquestionably a useful thing 
it was especially useful for our distant ancestors who did not perceive the world in more 
subtle concepts. But because we cannot switch it on or off at will, it sometimes does us a 
disservice, causing visual deception.  

 
¾¾THE CONDITIONED REFLEX AND LEARNING 

BUT LET US RETURN from inborn associations to developed ones, that is, to the actual 
associating of representations. The very essence of the metasystem transition from the 
fourth stage of evolution to the fifth lies in the difference between the suffixes of two 
words from the same root. The association is simply one of the aspects of the complex 
reflex, while associating is control of associations: the formation of new associations and 
disappearance of old ones.  

The capability for associating representations appears most fully as the capability for 
forming (and therefore also recognizing) new concepts. The dog that recognizes its 
master from a distance may serve as an example.  

The Pavlovian conditioned reflex is a more particular manifestation of the capability for 
associating. The diagram of this reflex is shown in figure 3.8.  

 

 

Figure 3.8.  Diagram of the conditioned reflex. 

The unconditioned stimulus S1 (food) is always accompanied by the conditioned stimulus 
S2 (a whistle), and as a result they become associated in one representation U, which, 
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because of the presence of S1 in it, causes the response R (salivation). Then stimulus S2 
causes U, and therefore R, even where S1 is not present. The whistle causes salivation.  

A question may arise here. The conditioned reflex arises on the basis of the unconditioned 
reflex whose diagram is S à R. At the same time, if the conditioned stimulus is removed 
in figure 3.8, we shall obtain the diagram S1à U à R. How do we know that step U 
exists? Is this an arbitrary hypothesis?  

In reality the diagram shown in figure 3.8 contains absolutely no hypotheses. We shall 
emphasize once more that this diagram is functional, not structural. We are making no 
assumptions about the organization of the nerve net; we are simply describing observed 
facts, which are these: first, state S1 leads, through the mediatio n of some intermediate 
states, to state R; second, state S2 in the end also leads to R. Therefore, at some moment 
these two processes are combined. We designate the state at this moment U and obtain 
the diagram we are discussing. In this way our diagram, and our approach in general, 
differ from the Pavlovian diagram of the reflex arc, which is precisely the structural 
diagram, a physiological model of higher nervous activity.  

The process of learning, if it is not reduced to the development of certain conditioned 
reflexes (that is, touching only the discriminatory hierarchy) also includes the element of 
acquiring know-how, development of specific skills. The process of learning also fits 
within the diagram of associating representations in the general meaning we give to this 
concept. After all, learning involves the development and reinforcement of a detailed plan 
to achieve a goal. a new plan that did not exist before. The plan may be represented as an 
organized group of associations. Let us recall the regulation diagram (see figure 2.6). 
With a fixed goal the comparison block must juxtapose a definite action to each situation. 
The ''untaught'' comparison block will test all possible actions and stop at those which 
yield a reduction in the discrepancy between the situation and the goal (the trial and error 
method). As a result of learning a connection is established between the situation and the 
appropriate action (which is, after all, a representation also) so that the ''taught'' 
comparison block executes the necessary action quickly and without error.  

Now for a few words about instinct and the relationship between instinctive behavior and 
behavior developed through learning. Obviously, instinct is something passed on by 
inheritance--but exactly what? In the book already referred to, Miller, Galantier, and 
Pribram define instinct as a ''hereditary, invariable, involuntary plan.'' Plans, as we know, 
are organized on the hierarchical principle. It is theoretically possible to assume the 
existence of an instinct that applies to all stages of the hierarchy, including both the 
general strategy and particular tactical procedures all the way to contracting individual 
muscles. ''But if such an instinct does exist,'' these authors write, ''we have never heard of 
it.'' The instinct always keeps a definite level in the hierarchy of behavior, permitting the 
animal to build the missing components at lower levels through learning. A wolf cub 
which is trying to capture a fleeing animal unquestionably acts under the influence of 
instinct. But it is one thing to try and another to succeed. ''It may be considered,'' Miller, 
Galantier, and Pribram write, "that copulation is an instinctive form of behavior in rats. In 
certain respects this is in fact true. But the crudeness of copulative behavior by a rat 
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which does not have experience in the area of courting shows plainly that some practice 
in these instinctive responses is essential.''  

As the organization of an animal becomes more complex and its ability to learn grows in 
the process of evolution, the instincts ''retreat upward,'' becoming increasingly abstract 
and leaving the animal more and more space for their realization. Thus the behavior of 
animals becomes increasingly flexible and changes operationally with changes in external 
conditions. The species' chances for survival grow .  

 
¾¾MODELING 

IN OUR DISCUSSION of associations of representations thus far we have completely 
ignored their dynamic, temporal aspect; we have considered the representations being 
connected as static and without any coordinate in time. But the idea of time can enter 
actively into our representations. We can picture figures that are moving and changing at 
a certain speed and we can continue the observed process mentally. A wheel rolls down 
the road. We close our eyes for a second or two and picture the movement of the wheel. 
Upon opening our eyes we see it in exactly the place where we expected it. This is, of 
course, the result of an association of representations, but this means an association, or 
more correctly representations, which are organically bound up with the passage of time. 
The wheel's position x at moment t is associated with the position x1 at moment t + ∆t 
with position x2 at moment t + 2∆t , and so on. Each of these representations includes a 
representation of the time to which it refers. We do not know the mechanism by which 
this inclusion is made and, in conformity with our approach, we shall not construct any 
hypotheses regarding this. We shall simply note that there is nothing particularly 
surprising in this. It is commonly known that an organism has its own time sensor, the 
''internal clock.''  

The association of representations that have a time coordinate enables us to foresee future 
situations in our imagination. We have just established the existence of such 
representations relying on internal, subjective experience. But the fact that animals also 
reveal the capability for foresight (look at the way a dog catches a piece of sugar) leads 
us to conclude that animal representations may also have a time coordinate.  

Speaking in the language of cybernetics, the interconnection of representations which 
have a time coordinate and the resultant capability to foresee the future is simply 
modeling, constructing a model of the environment.  
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Figure 3.9.  Diagram of modeling. 

Let us give the general concept of the model. We shall consider two systems αα  and ββ . Let 
us assume that to each state Ai of system α  α  we can somehow juxtapose one definite state 
Bi of system ββ . The inverse correspondence does not have to be unique (single-valued); 
that is, many states of α  α  may correspond to one state of ββ . Because, according to our 
definition, the genenalized state is a set of states, this proposition may be described as a 
one-to-one correspondence of the states of system ββ  to the generalized states of system  
α €α € . This is necessary but not sufficient to consider system ββ  a model of system  α  α  . 
Additionally there must be a transformation T(t) of system ββ  which depends on time t and 
models the natural passage of time in system  α  α  . This means the following: Suppose that 
system  α €α €  is initially in generalized state A1 which corresponds to state B1 of system ββ . 
Suppose that after the passage of time t the state of system a becomes A2 Then the 
conversion T(t) should switch system ββ  to state B2, which corresponds to generalized 
state A2. If this condition is met we call system ββ  a model of system  α  α  .  

The conversion T(t) may involve nothing more, specifically, than permitting system ββ  by 
itself to change its state with time. Such models are called real time models.  

The besiegers dug an opening under the fortress wall and placed several barrels of 
powder in it. Next to them a candle was burning and from the base of the candle a 
trail of powder ran to the barrels. When the candle burned down the explosion would 
take place. An identical candle lighted at the same time was burning on a table in the 
tent of the leader of the besieging forces. This candle was his model of the first 
candle. Knowing how much time remained until the explosion he gave his last 
orders.... Wild faces leaned over the table, hairy hands clutched their weapons. The 
candle burned down and a fearsome explosion shook the air. The model had not let 
them down.  
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The image on a television screen when a soccer game is being broadcast may also be 
formally considered a model of the soccer field and stands. All conditions are in fact 
observed. But one senses a great difference between the case of the two candles and the 
case of the soccer broadcast--a difference in the information links between systems a and 
ββ . Any image ββ  of object  αα  is a model of it in the broad sense; but there is a continuous 
flow of information from  αα  to ββ  and it is only thanks to this flow that the correspondence 
between states a and ββ  is kept. With information access to ββ , we in fact have access to  
α  α  . System ββ  operates as simply a phase in the transmission of information from  α  α  .  

The situation is quite different in the case of the two candles. Candle ββ  burns at the same 
speed as candle  α  α  , but independently of it. The leader of the besieging forces does not 
have access to candle a and cannot receive any real information regarding its state. By 
modeling he compensates for this lack and obtains equivalent information. System ββ  here 
plays a fundamentally different and more significant role. A spatial barrier is overcome, 
so to speak, by this means and this is done without establishing any new information 
channels.  

Even more important is the case where the model helps overcome a barrier of time rather 
than space. One cannot, alas, lay an information channel to the future. But a model 
permits us to operate as if there were such a channel. All that is required is that execution 
of the conversion T(t) on the model take less time than time t itself. Many other examples 
could be given of the use of such models in modern life, but that is hardly necessary. Let 
us return once again to associations of representations.  

We have seen that associations of static representations reflect the existence of spatial 
correlations, interrelationships in the environment. In exactly the same way associations 
of dynamic representations (models created by the brain) reflect dynamic temporal 
correlations that characterize the environment. Situation x after time t evokes (or may 
evoke) situation y--that is the general formula for such correlations, and in the brain these 
correlations are imprinted in the form of the corresponding associations.  

 
¾¾COGNITION OF THE WORLD 

WHAT IS knowledge? From a cybernetic point of view, how can we describe the 
situation where a person or animal knows something or other? Suppose we know there 
are two people in an adjacent room. Since they really are there, if we go into the room we 
shall see two people there. Because we do know this, we can, without actually entering 
the room, imagine that we are opening the door and entering it; we shall picture the two 
people who are in the room. In our brains therefore, an association of representations 
takes place which enables us to foresee the results of certain actions: that is. there is a 
certain model of reality. For the same reason, when we see a rolling wheel, we know 
where it will be a second later, and for the same reason when a stick is shaken at a dog 
the animal knows that a blow will follow, and so on.  
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Knowledge is the presence in the brain of a certain model of reality. An increase in 
knowledge--the emergence of new models of reality in the brain--is the process of 
cognition. Learning about the world is not a human privilege, but one characteristic of all 
higher animals. The fifth stage of evolution may be called the stage of individual 
cognition of the world.  
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CHAPTER FOUR 

The Human Being 
 
CONTROL OF ASSOCIATING 

WE HAVE COME to the most exciting moment in the history of life on earth, the 
appearance of the thinking being, the human being. The logic of our narrative compels us 
to link the appearance of thought with the next metasystem transition. We still know so 
little about the process of thinking and the structure of the thinking brain that any theory 
claiming to explain this phenomenon as a whole is hypothetical. Thus, our conception of 
thinking must also be treated as a hypothesis. However, this conception indicates the 
place of thinking in the series of natural phenomena and, as we shall see, puts a vast 
multitude of facts together in a system. The complete absence of particular, arbitrary 
assumptions, which ordinarily must be made when a theory includes a structural 
description of a little-studied object, is another positive feature. The core of our 
conception is not some hypothesis regarding the concrete structure and working 
mechanism of the brain, but rather a selection of those functional concepts through which 
a consistent and sufficiently convincing explanation of the facts we know about thinking 
becomes possible.  

Thus, we assert that the appearance of thinking beings, which marks the beginning of a 
new stage--perhaps a new era--in evolution (the era of reason) is nothing short of the next 
metasystem transition, which occurs according to the formula  

control of associating = thinking. 

To prove this assertion we shall analyze the consequences that follow from control of 
associating and equate them with the forms of behavior we observe in thinking beings.  

First of all. what is control of associating? Representations X and Y are associated in an 
animal only when they appear together in its experience. If they do not appear together 
(as a rule, on many occasions), the association will not arise. The animal is not free to 
control its associations; it has only those which the environment imposes on it. To control 
associating a mechanism must be present in the brain which makes it possible to associate 
any two or several representations that have no tendency at all to be encountered together 
in experience--in other words, an arbitrary association not imposed by the environment.  

This action would appear to be completely meaningless. An elder tree in the garden and 
an uncle in Kiev--why connect these two totally unrelated facts? Nonetheless, arbitrary 
associating has profound meaning. It really would be meaningless if brain activity 
amounted to nothing more than passively receiving impressions, sorting them, grouping 
them, and so on. But the brain also has another function--its basic one: to control the 
organism, carrying out active behavior which changes the environment and creates new 
experience. You can bet that the alarm clock and the holder for the teapot are in no way 
associated in your consciousness. Nor in the consciousness of your three-year-old son. 
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However, this is only for a certain time. One fine day, for some reason an association 
between these two objects occurs in the head of the young citizen and he is overcome by 
an insurmountable desire to rap the alarm clock with the holder. As a result, the objects 
enter a state of real, physical interaction.  

In the metasystem transition, some thing that was once fixed and uniquely determined by 
external conditions becomes variable and subject to the action of the trial and error 
method. Control of associating, like every metasystem transition, is a revolutionary step 
of the highest order directed against slavish obedience by the organism to environmental 
dictatorship. As is always true in the trial and error method, only a small proportion of the 
arbitrary associations prove useful and are reinforced, but these are associations which 
could not have arisen directly under the influence of the environment. And they are what 
permits a reasoning being those forms of behavior which are inaccessible to the animal 
that was frozen in the preceding stage.  

   

¾¾PLAY 

HIGHER ANIMALS reveal one interesting form of behavior, play, which relates them to 
human beings and is a kind of herald of the era of reason. We are not referring to 
behavior related to mating (which is also called play sometimes), but rather to ''pure'' and, 
by appearance, completely purposeless play--play for pleasure. That is how a cat plays 
with a piece of paper, and how the young (and the adults) of all mammals play with one 
another.  

 But what is play? How does this phenomenon arise in the animal world? Play is usually 
explained as a result of the need to exercise the muscles and nervous system, and it 
certainly is useful for this purpose. But it is not enough to point out the usefulness of a 
form of behavior; we still must explain how it becomes possible. When a kitten plays 
with a piece of paper tied to a string it behaves as if it thinks the paper is prey. But we 
would underestimate the mental capabilities of the kitten if we supposed that it was 
actually deceived--it is not. It has caught this paper many times, bitten it, and smelled its 
offensive, inedible odor. The kitten's representation of the paper is not included in the 
concept of ''prey.'' However, this representation partially activates the very same plan of 
action normally activated by the concept of ''prey." Similarly, a wolf frolicking with 
another wolf does not take its playmate for an enemy, but up to a certain point it behaves 
exactly as if it did. This is the very essence of play. It can be understood as the arbitrary 
establishment of an association between two objects such as the paper and the prey or the 
fellow wolf and the enemy. As a result there arises a new representation which, strictly 
speaking, has no equivalent in reality. We call it a ''fantasy,'' the result of ''imagination.'' 
Thus the paper plainly is not prey, but at the same time seems to be prey; thus fellow 
wolf is simultaneously friend and enemy. The synthetic representation generates a 
synthetic plan of action--a play plan. The wolf is completely serious and tries as hard as it 
can to overtake and catch its friend, but when it bites it is no longer serious.  
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Indeed, play exercises the muscles and develops skills which are useful during serious 
activities, but this impresses one more as a useful side effect than as a special strategic 
goal for whose sake play forms of behavior are developed. Everyone knows how children 
love to play, but what is attractive in their play is not so much the pleasure gained from 
physical exercise or showing one's agility as it is the game as such. When boys play 
soldiers and girls play dolls they are not exercising anything except their imagination--
that is, their ability to make arbitrary associations. It is these arbitrary associations which 
give them pleasure. Children's play is a phase of development through which every 
person must inevitably pass in order to become a person. In his remarkable book From 
Two to Five, K. Chukovsky devotes many pages to developing the idea of the absolute 
necessity for elements of play and fantasy in a child's upbringing. Children cannot get 
along without these things. They give themselves up to play completely, feeling it to be 
something needed, important, and serious.  

 K. Chukovsky writes:  

I knew a little boy who was pretending to be a chimney sweep and shouted, "Don't 
touch me, mama, you'll get dirty! . . .''  

Another little boy who had been pretending he was a meatball for quite some time 
and was conscientiously sizzling in the frying pan pushed his mother away in 
irritation when she ran up and began kissing him. ''How dare you kiss me when I'm 
cooked!'' he shouted.  

No sooner had my three-year old daughter Mura spread out her books on the floor in 
play than the books became a river where she caught fish and washed clothing. 
Accidentally she stepped on one of the books and exclaimed '"Oh, I got my foot 
wet!'' It was so natural that for a minute I believed that the books were water and 
almost ran over to her with a towel.  

In all of these games the children are both the authors and the performers of 
fantasies which they embody in play-acting. And the desire to believe in their make-
believe is so strong that any attempt to bring them back to reality evokes heated 
protest.  
  

The apparatus for controlling associations first announces its existence through the need 
for play. And because it exists it must work: it needs something to do. This is just as 
natural as the lungs needing air and the stomach food.  

   

¾¾MAKING TOOLS 

BUT LET US leave play behind and pass on to the serious acts of serious adult people. 
When speaking of the origins of human beings the use and manufacture of tools are 
pointed out as the first difference between humans and animals. The decisive factor here 
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is, of course, making the tools. Animals can also use objects as tools. The woodpecker 
finch of the Galapagos Islands uses a spine of cactus or small chip to pick worms out of 
the bark of a tree. No one who has seen pictures of the skillful way the finch manages the 
spike held in its beak can fail to agree that this is a clear and very artful use of a tool. The 
California sea otter lies on its back on the surface of the water, places a flat rock on its 
chest, and breaks mussels open with it. Monkeys sometimes use sticks and stones. These 
are very meager examples, but they show that in principle there is nothing impossible in 
animals using tools. In fact, why can't a plan of action passed on by heredity and 
reinforced by learning include the selection and use of certain types of objects? Concepts 
such as "long and sharp" or ''round and heavy'' are fully accessible to animals. It is 
obvious that examples such as those given above are rare, because the tools that can be 
received from nature without special manufacture are very imperfect and in the process 
of evolution animals have greater success using and refining their natural organs: beaks, 
claws, and teeth. If the use of tools is to become the rule, not the exception, it is necessary 
to be able to make them or at least to be able to find suitable objects especially for the 
particular case.  

Suppose that you have to drive a nail but do not have a hammer handy. You look around, 
seeking a suitable object and spot a bronze bust of Napoleon on the table. You have never 
before had to drive nails with Napoleons. We can even assume that you have never 
before driven nails with anything but a real hammer. This will not prevent you from 
taking the bust and driving the nail. You did not have the association ''nail = bust," you 
created it. In your imagination you compared the nail and the bust of Napoleon, pictured 
how you could drive the nail with him, and then did so.  

   

¾¾IMAGINATION, PLANNING, OVERCOMING INSTINCT 

IF IN THE BRAIN of the animal there is an association between object X, a tool, and 
object Y, the object of the action (and, of course, if it is physically possible to execute the 
action), the animal will be capable of using the tool. But if there is no such association, 
the animal does not ''guess'' that it should do this. A dog may be trained to drag bench X 
in its teeth to fence Y, climb up on the bench, and jump from it over the fence, but if it is 
not taught this it will not figure it out with its own mind. The dog knows very well that 
the bench can be moved from place to place. It also knows what opportunities open up 
when the bench is next to the fence; if you put the bench there it will immediately jump 
up on it and leap over the fence (assuming that there is some need for it to do so). This 
means that it is able to foresee the result of the combination of X and Y; it has the 
corresponding model in its brain. But this model is just dead weight, because the dog 
cannot picture to itself the combination XY as a goal to strive toward; it does not have the 
imagination for this. It is not enough to know what will  be, one must also imagine what 
can be. The bare formula which equates thinking with control of associating may be 
translated into less precise but more figurative language by stating that the human being 
differs from the animal by the possession of imagination.  
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Let us construct a very simple model of the working of imagination, using A to designate 
the situation occuring at a given moment and Z for the situation to be achieved. We shall 
consider that for the given situation only some other situations are immediately 
achievable. This will be written by the formula:  

A à  (B, C, H, Z) 

where situations immediately achievable from A are shown in parentheses.  

Let us assume that a certain animal (or person) knows which situations are achievable 
from which others--that is, in its brain there is a series of associations that can be 
represented in formulas resembling the one above. We shall also consider that for each 
transition from the given situation to another, directly achievable, one the action which 
executes it is known. We shall not introduce designations for this, however, so as not to 
clutter up the formula.  

 If the brain does possess the exact association shown above, and therefore state Z is 
achievable from A, the animal will immediately execute the necessary action. Now let us 
suppose that the brain contains the following group of associations:  

 
A à  (B, C, D) 

B à  (E, F) 

D à  (G, H, I, J) 

H à  (B, C) 

I à (B, C, Z)  
 

In this table there is no action which would switch A to Z, and therefore the animal given 
this problem will not be able to solve it. It will either do nothing or flounder in confusion, 
executing all the actions in the table without any order. But the human being will imagine 
that he has performed action A in order to understand what situations will become 
accessible to him in this case. In other words, he will create new associations, which can 
be written as follows:  

  A à  B à  E  

A à  B à  F    

It is true that in the given case these associations will prove useless, but continuing with 
such attempts the human being will finally find the solution:  
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 A à  D à  I à  Z.  

It is also possible, of course, to approach the problem from goal Z. The main thing is that 
the table of associations itself does not remain unchanged; it becomes an object of work 
according to the trial and error method and new lines are added to it. Further, these lines 
do not appear through the influence of the environment (which determines only the initial 
list of associations), they result from the functioning of a special mechanism which 
follows its own rules and laws.  

The higher animals also have the rudiments of imagination, which manifest themselves, 
as has already been noted, particularly in games. Elements of imagination can be clearly 
discerned in the behavior of the anthropoid apes, which show a resourcefulness dogs and 
other animals cannot attain. There have been experiments in which an ape has used a 
support (a cube) to reach a suspended lure, and has even placed one cube on top of 
another if necessary. With a stick, the ape can push a lure out of a segment of pipe. It can 
find an appropriate stick, and even split it in half if it is too thick and does not go into the 
pipe. This can be considered the beginning of toolmaking.  

All the same, the boundary is not between the dog and the ape, but between the ape and 
the human being. At some moment our ancestors' ability to control associating crossed a 
threshold, beyond which it became an important factor for survival. Then this capability 
was refined during the course of evolution. The metasystem transition was completed; the 
human being had become distinct from the world of animals.  

Many factors played parts in the process of humanization, above all the organization of 
the limbs of the man-ape. No matter what wise instructions the brain might give, they 
would come to naught if it were physically impossible to execute them. On the other 
hand, the existence of organs capable of executing subtle actions does not by itself give 
rise to thinking: Insects are physically capable of very complex operations; the limbs of 
the dinosaurs could, in principle, have served as the starting point for the development of 
arms; the tentacles of the octopus are more perfect in design than our arms. 
Unquestionably the leading role is played by the brain. At the same time, the arms of the 
man-ape and the possibility of having them free when walking fostered a situation where 
the brain's capability for control of associations became (through the mediation of using 
and making tools) a factor of decisive importance for survival. Other factors, such as a 
sharp change in natural conditions, could operate in this same direction. It may be that 
some other circumstances also played a part. Clarifying the concrete conditions of the 
origin of the human being and the role played in this process by various circumstances is 
a complex and interesting problem on which many scientists are working, but it is not the 
subject of this book. For us it is enough to know that the combination of conditions 
necessary for the metasystem transition did come about.  

 Because the goals which are the most important elements in a plan are representations, 
the ability to associate representations arbitrarily means the ability to make plans 
arbitrarily. The human being can decide as follows: first I will do A, then B, then C, and 
so forth. The corresponding chain of associations arises. The human being can decide that 
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it is absolutely necessary to do X. The association ''X--necessary'' arises. New, concrete 
plans also occur to the animal constantly, but the mechanism of their occurrence is 
different. They are always part of a more general (standing higher in the hierarchy) plan 
and, in the end, a part of instinct. The goals the animal sets are always directed to 
executing an instinctive plan of actions. The instinct is the supreme judge of animal 
behavior--its absolute and immutable law. The human being also inherits certain 
instincts, but thanks to the ability to control associations he can get around them and 
create plans not governed by instinct and even hostile to it. Unlike the animal, the human 
being sets his own goals. Where these goals and plans are taken from and what purpose 
they serve is another matter. We shall take this up when we discuss the human being as a 
social being. For now, the only thing to keep in mind is that the human brain is organized 
in a way that makes it possible to go beyond the framework of instinctive behavior.  

   

¾¾THE INTERNAL TEACHER 

THE HUMAN BEING does not by any means perform each operation ''through personal 
imagination''--that is, as if discovering it for the first time. On the contrary, a person (at 
any rate an adult) does most operations without using imagination; they are routine and 
customary, and they are regulated by already established associations. The mechanism of 
such operations does not differ from what we observed in animals, and we call the 
method by which the necessary associations are developed learning, just as with animals. 
But the mechanism of learning in humans and animals differs radically.  

In the animal, new associations are in a certain sense imposed from outside. For an 
association to form it must have motivational grounds, be related to a negative or positive 
emotion. Reinforcement is essential. In other words, teaching takes place only by the 
''carrot and stick'' [in Russian, literally, ''knout and cake'']. When a person learns, he 
himself is taking steps toward learning; but this is not because he knows that ''learning is 
useful.'' The baby does not know this, but it learns most easily and actively. In the baby, 
associations "simply form'' without any reinforcement. This is the functioning of the 
mechanism for control of associating, which requires nourishment. If he does not have it 
the person becomes bored, a negative emotion. There is no need for the teacher to force 
anything on the child, or upon people in general: the teacher's job is simply to provide 
nourishment for the imagination. Upon receiving this nourishment a person feels 
satisfaction. Thus, he himself is always learning inside. This is an active, creative 
process. Thanks to the metasystem transition, the human being acquired his own internal 
teacher who is constantly teaching him, driving him with the internal stick and luring him 
with the internal carrot.  

The ''internal teacher'' is not a fanatic; he takes a realistic approach to his pupil's 
capabilities. Representations which coincide or are close in time by no means always 
form stable associations. If they did, it would indicate the existence of absolute memory--
that is, total recall. We do not know why we do not have this capability; it may be 
supposed that the brain's information capacity is simply inadequate. But the existence of 
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people whose capabilities for memorization are substantially greater than average appears 
to contradict this hypothesis and leads us to conclude that the lack of such capability is 
more likely the result of some details involving the organization of control of associating. 
In any case, because there is no absolute memory there must be a criterion for selecting 
associations. One of the human criteria is the same as found among animals: emotional 
strain. We memorize things involving emotions first of all. But the human being also has 
another criterion (which is, by the way, evidence of the existence of control of 
associating): we can decide to memorize something and as a result in fact do memorize it. 
Finally, the third and most remarkable criterion is that of novelty. We know that people 
memorize things new to them and let old things go by (''in one ear and out the other''). 
But what is the difference between ''new'' and "old?" After all, strictly speaking no 
impression is ever repeated. In this sense every impression is a new one. But when we 
hear talk on a hackneyed subject or see hackneyed situations on a movie screen we start 
to yawn and wave our hand in annoyance: ''This is old!'' When the stream of impressions 
fits into already existing models, our ''internal teacher'' sees no need to change the model 
and the impressions slip by without any consequences. This is the case when we know 
ahead of time what is coming. But when we do not know what is coming (or even more 
so when it contradicts the model) then new associations appear and the model becomes 
more complicated. The relationship to the model already existing in the brain is the 
criterion for the novelty of an impression.  

As we begin to talk about memory and other aspects of the human psyche, we touch on 
many unresolved problems. Fortunately, a systematic presentation of human psychology, 
particularly in its "cyberneticized'' variation, is not part of our task. We shall be content 
with a quick survey of the psychological characteristics that distinguish human beings 
from animals in order to be sure that they are the natural results of the metasystem 
transition--the appearance of an apparatus for controlling associating.  

We have seen that the control of associating leads to a qualitative difference between the 
human and the animal in susceptibility to learning. We shall also note in passing that the 
enormous quantitative difference that exists between these levels for humans and 
animals, and that is expressed simply in the quantity of information memorized in the 
process of learning, is also a direct consequence of the metasystem transition. It follows 
from the aforementioned law of branching of the penultimate level. In this case the 
penultimate level consists of the physical devices for the formation of associations. 
Multiplication of these devices means enlarging memory. We shall deviate here from our 
principle of not considering structural models of the brain to point out the branching of 
the human cerebral cortex, which according to general (and well-founded) opinion is the 
storage place for associations.  
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Figure 4.1.  Area of the cerebral cortex in the horse, orangutan, and human 
being. 

¾¾THE FUNNY AND THE BEAUTIFUL 

ALL THE SAME, qualitative differences are more interesting. We have already 
established that the existence of a special apparatus for the control of associating makes 
learning an active process involving positive and negative emotions for the human being. 
These are truly human emotions which are inaccessible to beings that do not possess this 
apparatus. The goal of associating is the construction of a model (or models) of the 
environment, and we may therefore conclude that a new emotion will be positive if it 
establishes an association which improves the brain model of the world. This emotion can 
be called the pleasure of novelty using the term ''novelty'' in the sense we gave it above. 
The corresponding negative emotion is called boredom. We have already enumerated the 
criteria for establishing and reinforcing associations and separated the criterion of novelty 
from the criterion of the existence of emotional reinforcement. We had in mind ordinary 
emotions common to humans and animals. When we raise the pleasure of novelty to the 
rank of an emotion we can declare the third criterion to be a particular case of the first. 
Then we can say that involuntary associating always involves emotional reinforcement, 
but compared to the animal the human being possesses a fundamentally new class of 
emotions.  

 Yes, that is right, a class. The ''pleasure of novelty'' is a very general term which covers a 
whole class of emotions. We can immediately point out two plainly different 
representatives of this class: the sense of the funny and the sense of the beautiful. Hardly 
anyone today would try to maintain that he has fully and finally understood the nature of 
these emotions and can give them a detailed cybernetic interpretation. Unquestionably, 
however, they are inseparable from cognition of the world, from the creation of new 
models.  

 What makes us laugh? A disruption of the ''normal'' course of events which is completely 
unexpected but at the same time natural, and in hindsight entirely understandable: an 
unexpected association, meaningless at first glance but reflecting some deep-seated 
relationships among things. All this, of course, creates a new model of the world and 
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gives pleasure proportional to its novelty. When it is no longer new it is no longer funny. 
When someone tries to make us laugh using a very familiar model we call it ''flat'' humor. 
But this is a very relative concept. Everyone is familiar with the situation where a joke is 
told and one listener bursts out laughing while the other smiles sourly. The difference 
between the two listeners is obviously the absence or presence of the corresponding 
model. Another situation very important for clarifying the nature of humor occurs when 
one person laughs and another glances around uncomprehending. ''He didn't get it,'' they 
say in such cases. The joke was too subtle for this person; it relied on associations he did 
not have. What is funny is always on the borderline between the commonplace the 
unintelligible. Every person has his own borderline and the line shifts in the process of 
individual development. Nothing shows the level of a person's sophistication so clearly as 
his understanding of what is funny.  

 There are more individual differences among people in their sense of the beautiful--a 
sense more subtle and mysterious than the sense of humor. But here too we find the same 
dynamism related to the novelty of the impression. Frequent repetition of a pleasing piece 
of music creates indifference to it, and finally revulsion. A sharp sensation of the 
beautiful is short in duration; it includes the element of revelation. enchanting surprise. It 
can also be described as the sudden discernment of some deep order, correspondence, or 
meaning. If we attempt to interpret this phenomenon cybernetically, we may assume that 
the sense of the beautiful evokes impressions which give nourishment to the most 
complex and subtle models, which employ classifiers on the highest level. These 
classifiers must, of course, compress information to the maximum degree and recognize 
extremely complex concepts. That is what discernment of a deep internal order in 
apparent disorder is.  

All models are hierarchical. The more complex is built on the simpler, and the higher 
rests on the lower. A person may be insufficiently developed in esthetic terms and not see 
beauty in a place where others do see it. To an untrained listener a masterpiece of 
symphonic music will seem to be a meaningless cacophony. On the other hand, a banal 
melody or a primitive geometric ornament will not elicit a sensation of the beautiful in 
us; in this case the order is too obvious. When we say in "us,'' we are speaking of modern, 
civilized people. It is possible that a Neanderthal would be shaken to the depth of his soul 
upon seeing a series of precisely drawn concentric circles. The beautiful too is always 
found on the borderline between the commonplace and the unintelligible. Shifting this 
line, which we can define as esthetic education, is cognition of the world and the 
consequent construction of new models in the brain.  

We are taking the sense of the beautiful in its pure form. In reality it is ordinarily bound 
up with other human feelings, often forming inseparable groups and therefore influencing 
many spheres and aspects of societal life. The value of esthetic experiences, which may 
be called its applied value, has long been widely recognized. The situation with pure 
esthetics is worse. Now and again through the course of human history there have been 
calls to put an end to pure esthetics once and for all, as something not simply useless but 
even directly harmful. (The harm has been understood in different ways. Some have 
proclaimed beauty to be sinful while others have argued that it distracts from the class 
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struggle.) On the other hand, there have been attempts by the vulgar materialist school to 
explain and ''justify" the beautiful by reducing it to the useful in the most ordinary, 
everyday sense of the word. This is like someone praising a transistor radio because it can 
be used to drive nails and crack nuts. This attitude arises from a failure to understand that 
pure esthetic education trains the brain to perform its highest and most subtle functions. 
The brain is unitary. The models created in the process of esthetic education 
unquestionably influence a person's perception of the world and his creative activity. 
Exactly how this happens is unknown. Esthetic education is more precious because we 
know of no substitute for it.  

  

¾¾LANGUAGE 

UNTIL NOW we have considered the human being as an individual only and have been 
interested in the capabilities of the human brain. With this approach it is not at all 
obvious that the appearance of the human being on earth was such a major revolution in 
the history of life. The frog was more intelligent than the jellyfish. The dog was more 
intelligent than the frog. The ape was more intelligent than the dog. Now there appeared a 
being which was more intelligent than the ape. Well, so what'?  

 The revolution was created by the appearance of human society which possessed a 
definite culture, above all language. The key aspect here is language. Language in 
general is understood to be a certain way of correlating objects Ri, which are considered 
to be some kind of primary reality, to objects Li which are called the names of objects Ri 
and are viewed as something secondary, especially created to be correlated to objects Ri . 
In relation to the name Li object Ri is called its meaning. The aggregate of all objects Li is 
frequently also called a language (in a more expanded form it would be better to call it 
the material fixer or carrier of the language). The set of objects Ri can be much broader 
and more varied than the set of language objects Li This is the case, for example, with 
natural languages such as Russian, English, and others. It is clear that an enormous 
amount of information is lost when word descriptions are substituted for the perception of 
real objects and situations. In those cases where the information levels of objects Ri and 
Li are on the same order of magnitude, the cybernetic term code is often used in place of 
the word ''language.'' The transition from R to L is called coding and the opposite 
transition from L to R is decoding. Thus, when a message is transmitted in 'Morse' Code 
by radio, the initial text--a set of letters--is coded in a set of dots and dashes. In this code 
(language), information travels through the air and is received at an assigned point, where 
decoding from the language of dots and dashes to the language of letters takes place. In 
this case the process of coding and decoding does not cause information loss.  

Because there are no more convenient and generally accepted terms than coding and 
decoding for the transition from the meaning to the name we shall use these terms in the 
most general sense, disregarding the ratio of information levels (and calling language 
simply that, and not ''code'').  
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Objects Ri and Li may be arbitrary in nature; they do not have to be physical objects but, 
speaking generally, may be phenomena such as sound oscillations. Let us note that 
'phenomenon'' is the most general term we can use to designate a part of physical reality 
which is limited in space and time; ''physical object,'' by contrast, is a less clear-cut 
concept which refers to phenomena of a special type that reveal a certain stability: they 
have a surface across which the exchange of matter does not take place. This concept is 
not clear-cut because there are no absolutely impenetrable boundaries in reality and so-
called ''physical objects'' are continuously changing. This is a relative concept which only 
reflects a low rate of change.  

Elementary language is also found among animals, especially among those living in 
communities, which therefore must somehow coordinate their actions and ''clarify 
relationships.'' We call this language elementary only in comparison with human 
language; by itself animal language is not at all simple and evidently well satisfies the 
needs of members of the community for the exchange of information. The danger signal, 
the call for help, the intention to initiate mating relationships and the acceptance or 
rejection of this intention, the order to obey, and the order for everyone to head home--
these and other components are found in the languages of most birds and mammals. They 
are expressed by gestures and sounds. When bees return to the hive from a honey-
gathering expedition they show the other bees where they have been by performing 
certain unique movements which resemble a dance.  

   

¾¾CREATION OF LANGUAGE 

HUMAN LANGUAGE differs radically from animal language. As was the case with the 
use of tools, the animal language is something given at the start--an element of instinctive 
behavior. If language does change it is only along with changes in behavior 
accompanying the general evolution of the species. For the human being, language is 
something incomparably more mobile and variable than behavior. The human being 
himself creates language: he has the capability (and even the need) to assign names, 
something no animal can do. Giving names to phenomena (specifically, to physical 
objects) is perhaps the simplest and most graphic manifestation of the control of 
associating. There is nothing in common between the word ''lion" and a real lion, but 
nonetheless the association between the word and its meaning is established. It is true that 
many onomatopoetic words appeared in the dawn of human culture. There is an 
abundance of such words in the languages of primitive cultures. The same thing is even 
more true of gestures, which have obviously always been imitative at base. But this does 
not change the nature of the association between the name and the meaning as the result 
of deliberate associating. Let us suppose that in some primitive language the lion is called 
''rrrrr.'' The association between "rrrrr" and the lion does not arise because this sound can 
be confused with the lion's roar (it would be quite a hunter who was capable of making 
such a mistake), but because in searching for a name for the lion the human being sorts 
through the animal's characteristics in his imagination and selects one of them which 
permits at least an approximate reproduction. The creator of a name perceives it 
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subjectively as something close to the meaning-- something like it or, to be more precise, 
likened to it. This is because the objective resemblance between the name and the 
meaning cannot be large; it is almost nil and serves only as an umbilical cord, which 
withers away soon after the name is born. The association between the name and the 
meaning does not arise at all in the way that the association between types of dishes and 
salivation arose in Pavlov's experiments with dogs. The latter was a conditioned reflex, 
but the former is creation of language. The occasion that brought about the choice of the 
name is forgotten and the name itself is transformed, but the relationship between the 
name and its meaning does not suffer from this.  

   

¾¾LANGUAGE AS A MEANS OF MODELING 

LANGUAGE ARISES as a means of relationship, of communication among members of 
a primitive community. But once it has arisen it immediately becomes a source of other, 
completely new possibilities which are not in principle related to relationships among 
people. What these possibilities are we shall demonstrate with the example of the 
language of numbers.  

Let us imagine a young man from the primitive Nyam-Nyam tribe. We shall call him Uu. 
Now let us see how he performs the duties of scout.  

Uu is lying behind a thick old oak tree and keeping constant watch on the entrance 
to a cave on the opposite bank of the river. At sunrise a group of men from the 
hostile Mayn-Mayn tribe approach. They are obviously planning something bad, 
probably setting up an ambush in the cave. They scurry back and for th, now going in 
the cave and now coming out, first disappearing in the forest and then returning to 
the cave. Each time an enemy enters the cave Uu bends over one finger, and when 
an enemy comes out of the cave he unbends one finger. When the enemy goes away 
Uu will know if they have left an ambush party and, if they have, how many people 
are in it. Uu will run to his own tribe and tell them with his fingers how many enemy 
men remain in the cave.  

Our hero is able to know how many men are in the cave at any moment because he has 
used his fingers to construct a model of that part of the external world which interests 
him. And what interests him is the cave and the enemy in it. In his model one bent finger 
corresponds to each enemy in the cave. A bent finger is the name of the enemy in the 
cave; an enemy in the cave is the meaning of a bent finger. The operations performed on 
the names, bending and unbending the fingers, correspond to the entrances and exits of 
enemies from the cave. This is a language. It can be called a finger language if we are 
looking at the physical material from which the model is constructed or a number 
language if we are looking at the method of correlating names with meanings. And this 
language is used not so much for information transmission as for constructing a model 
which is needed precisely as a model--as a means of foreseeing events, a means of 
finding out indirectly that which cannot be found out directly. If his native Nyam-Nyam 
tribe is far away and Uu does not intend to tell anyone how many enemy men are in the 
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cave, in order to plan his own course of action he still has reason to count them. The 
communicative use of language (a means of communication among people) is 
supplemented by the noncommunicative use of language (a means of constructing models 
of reality).  

 We come now to the crux of the matter. The modeling function of language is that final 
element which we lacked for assessing the appearance of the human being on earth as the 
boundary between two ages, as an event of cosmic importance. When an astronomer 
determines the position of the planets in the sky, makes certain calculations, and as a 
result predicts where the planets will be after a certain interval of time, he is essentially 
doing the same thing that Uu did when he bent and unbent his fingers as he watched the 
entrance to the cave. Art, philosophy, and science--all these are simply the creation of 
linguistic models of reality. The remainder of this book will be devoted to an analysis of 
this process, its laws and results. But first we shall take a general look at its place in the 
evolution of the universe.  

 
¾¾SELF-KNOWLEDGE 

THE ANIMAL has no concept of itself; it does not need this concept to process 
information received from outside. The animal brain can be compared to a mirror that 
reflects the surrounding reality but is not itself reflected in anything. In the most primitive 
human society each person is given a name. In this way, a person, represented in the form 
of sentences containing the person's name, becomes an object for his or her own attention 
and study. Language is a kind of second mirror in which the entire world, including each 
individual, is reflected and in which each individual can see (more correctly, cannot help 
but see!) his or her own self. Thus the concept of ''I" arises. If the stage of cognition may 
be called the concluding stage of the cybernetic period, the era of reason is the era of self-
knowledge. The system of two mirrors, the brain and language, creates the possibility of 
a vast multitude of mutual reflections without going outside the space between the 
mirrors. This gives rise to the unsolved riddles of self-knowledge, above all the riddle of 
death.  

   

¾¾A CONTINUATION OF THE BRAIN 

LET US SUPPOSE that three enemies enter the cave and two come out. In this case even 
without the use of fingers the primitive man will know that one enemy has remained in 
the cave. A model he has in his brain is operating here. But what if 25 go in and 13 or 14 
come out? In this case the human brain will be impotent; it does not contain the necessary 
model, the necessary concepts. We instantaneously and without error distinguish sets of 
one, two, three, and four objects and can imagine them clearly. These concepts are given 
to us from nature and are recognized by the nerve net of the brain, just as the concepts of 
spot, line, contiguity, and the like are. It is not so easy with concepts expressed by the 
numbers between five and eight; here a great deal depends on individual characteristics 
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and training. As for the concepts of ''nine,'' ''ten.'' and so on, with very rare exceptions 
they are all merged into the single concept of ''many.'' And then the human being creates 
a language whose material carrier (for example the fingers) serves as a fixer of new 
concepts, performing the functions of those classifiers for which no room was found in 
the brain. If there are not enough fingers then pebbles, little sticks, and chips will come 
into play . . . and in the more developed languages, numbers and sets of numbers. The 
language used is not important; the ability to encode is. The process of counting serves 
for the recognition of new concepts, performing the functions of the nerve net which is 
put in a stimulated state by some particular classifier. As a result of counting, the object R 
(which for example represents an enemy detachment) is correlated with object L (which 
for example is a series of chips or numbers). Finally, the rules for operations with the 
language objects and the relations among them (for example of the type 6 + 3 = 9 and so 
on) correspond to associations between concepts in the brain. This concludes the analogy 
between models realized by means of language and models created by the neuron nets of 
the brain.  

 If the tool is a continuation of the human hand, then language is a continuation of the 
human brain. It serves the same purpose as the brain: to increase the vitality of the 
species by creating models of the environment. It continues the work of the brain using 
material lying outside the physical body, basing itself on models (concepts and 
associations) of the pre-language period which are realized in nerve nets. It is as if the 
human being had stepped across the boundary of his own brain. This transition, this 
establishment of a relationship between internal and external material, became possible 
owing to the capability for control of associating, which was expressed in the creation of 
language.  

The two functions of language, communication and modeling, are inseparably 
interconnected. We gave counting on the fingers as an example of a model which arises 
only thanks to language and which cannot exist without language. When language is used 
for communication it performs a more modest task: it fixes a model which already exists 
in someone's brain. Phrases such as "It is raining" or ''There are wolves in the 
neighboring forest,'' or more abstract ones such as 'poisonous adder'' or ''fire extinguishes 
water,'' are models of reality. When one person communicates this to another the 
associations, which were formerly in the head of the first person only, become 
established in the head of the second.  

Owing to the existence of language human society differs fundamentally from animal 
communities. In the animal world members of a community communicate only on the 
level of functions related to food and reproduction. Members of human society 
communicate not only on this level, but also on the highest level of their individual 
organization, on the level of modeling the external world by means of the association of 
representations. People have contact by brain. Language is not only a continuation of 
each individual brain but also a general, unitary continuation of the brains of all members 
of society. It is a collective model of reality on whose refinement all members of society 
are working, one that stores the experience of preceding generations .  
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¾¾SOCIAL INTEGRATION 

THE METASYSTEM transition in the structure of the brain, control of associating, 
generated a new process, that of social integration--the unification of human individuals 
into a certain new type of whole unit: human society. All human history has gone forward 
under the banner of social integration; relations among people are growing qualitatively 
and quantitatively. This process is taking place at the present time, very intensively in 
fact, and no one can say for sure how far it will go.  

Social integration is a metasystem transition; it leads to the appearance of a new level of 
organization of matter, the social sphere. Communities of animals can be viewed as the 
first (and unsuccessful) attempts to make this transition. We know communities of 
animals, for example ants, in which certain individuals are so adapted to life within the 
community that they cannot live outside it. The anthill may with full justification be 
called a single organism; that is how far interaction among individuals and specialization 
of them has gone in it. But this interaction remains at the level of the lowest functions. 
There is no "contact among brains." There is no creation of new models of reality. No 
fundamentally new possibilities are opened up because of the joining of ants into a 
society; they are frozen in their development. The anthill is, of course, a metasystem in 
relation to the individual ant. The integration of individuals takes place. However, this is 
not a new stage in evolution, but merely a digression, a blind alley. In Russian literature 
the word sotsial'nyi (social) which has the same literal meaning as the word 
obshchestvennyi, has traditionally been used to apply to human society only, thus 
emphasizing the fundamental difference between it and animal society. That is why I use 
the term sotsial'nyi here and it is how the phrases ''social sphere" and ''social integration'' 
must be understood.  

 

Figure 4.2.  Stages in the evolution of life. 

Thus, attempts by nature to form a new stage in the organization of matter by integrating 
multicellular organisms had no significant results for a long time: there was no 
appropriate material. A metasystem transition in the structure of the brain was needed in 
order for individuals to acquire the capability to make the necessary connections. One 



  

 86

other consequence of the control of associating is very important for development of the 
social sphere. This is the capability of the human being to go beyond instinct, to construct 
plans of action that are completely unrelated to instinct and sometimes even contradict it. 
These two characteristics make the human being a social being--that is, material suitable 
for building human society, the social unit as opposed to the individual. The word 
''material'' in reference to human beings sounds wrong, somehow degrading. Do you in 
fact think there is some kind of higher being who is building society using human beings 
as material? Of course not. The human being himself is the creator. And this is not some 
abstract Human (with a capital letter), but a concrete human, a human personality, an 
individual. Everything that society possesses has been produced by the creativity of 
human individuals. But at the same time (such is the dialectic of the relationship between 
the personality and society) the human being is significant only to the extent that he or 
she is significant for society. This must not be understood, of course. to mean that 
someone who is not recognized is not a genius. A person may oppose the entire society, 
that is to say all those people living at a given moment, but at the same time be guided by 
the interests of society, the logic of society's development. There are two levels of the 
organization of matter: the animal level, for which the highest laws are the instincts of 
self preservation and reproduction, and the human level, which means human society. 
Everything in the human being that we call distinctly human is a product of the 
development of society. The human being as a purely biological (pre-social) being is 
nothing but the possibility of the human being in the full sense of the word. If there is any 
logic at all in human actions it is either the logic of animal instincts or the logic of society 
s development (possibly veiled and not recognized as such). There is simply nowhere else 
to find any other logic. Therefore,  although there is no being to whom the human. acting 
as creator, is subordinate, the human being is nevertheless subordinate to some highest 
law of evolution of the universe and, it may be said, is the material for the action of this 
law.  

   

¾¾THE SUPER-BEING 

THE APPEARANCE of human society is a large-scale metasystem transition in which 
the subsystems being integrated are whole organisms. On this level it may be compared 
with the development of multicellular organisms from unicellular ones. But its 
significance, its revolutionary importance, is immeasurably greater. And if it is to be 
compared to anything it can only be compared to the actual emergence of life. For the 
appearance of the human being signifies the appearance of a new mechanism for more 
complex organization of matter, a new mechanism for evolution of the universe. Before 
the human being the development and refinement of the highest level of organization, the 
brain device, occurred only as a result of the struggle for existence and natural selection. 
This was a slow process requiring the passage of many generations. In human society the 
development of language and culture is a result of the creative efforts of all its members. 
The necessary selection of variants for increasing the complexity of organization of 
matter by trial and error now takes place in the human head. It can take place at the level 
of intuition-- as the result of sudden enlightenment and inspiration-- or it may break down 
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into distinct, clearly recognized steps. But in one way or the other it becomes inseparable 
from the willed act of the human personality. This process differs fundamentally from the 
process of natural selection and takes place incomparably faster, but in both its function 
(constructing and using models of the environment) and in its results (growth in the total 
mass of living matter and its influence on nonliving matter) it is completely analogous to 
the earlier process and is its natural continuation. The human being becomes the point of 
concentration for Cosmic Creativity. The pace of evolution accelerates manyfold.  

 Society can be viewed as a single super-being. Its ''body'' is the body of all people plus 
the objects that have been and are being created by the people: clothing, dwellings, 
machines, books, and the like. Its "physiology" is the physiology of all people plus the 
culture of society--that is, a certain method of controlling the physical component of the 
social body and the way that people think. The emergence and development of human 
society marks the beginning of a new (the seventh in our count) stage in the evolution of 
life. The functional formula of the metasystem transition from the sixth stage to the 
seventh is: 

control of thinking = culture 

Language is the most important constituent part of culture. It fulfils the functions of a 
nervous system. As in the nervous system of a multicellular organism, its first function 
historically and logically is the communicative function, the exchange of information 
among subsystems and coordination of their activity. In the process of carrying out this 
function language, again precisely like the nervous system ''one step lower,'' receives a 
second function: modeling the environment. And just as stages related to metasystem 
transitions can be identified in the development of the brain, so the development of 
language models takes place (as we shall see) by successive metasystem transitions in the 
structure of language.  

The parallels between society and a multicellular organism have long been noted. But the 
question is: what are we to make of these parallels? It is possible to consider them, if not 
random, then at least superficial and insignificant--something like the resemblance 
between the boom of a hoisting crane and the human arm. But the cybernetic approach 
brings us to another point of view according to which the analogy between society and 
the organism has a profound meaning, testifying to the existence of extraordinarily 
general laws of evolution that exist at all levels of the organization of matter and pointing 
out to us the direction of society's development. This point of view conceals in itself a 
great danger that in vulgarized form it can easily lead to the conception of a fascist-type 
totalitarian state. In chapter 14, in our discussion of the problem of creative freedom of 
the personality, we shall consider this question in greater detail too. For now we shall 
note that the possibility a theory may be vulgarized is in no way an argument against its 
truth. The branch of modern science called cybernetics gives us concepts that describe the 
evolutionary process at both the level of intracellular structures and the level of social 
phenomena. The fundamental unity of the evolutionary process at all levels of 
organization is transformed from a philosophical view to a scientifically substantiated 
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fact. When thinking of the destiny of humanity and its role in the universe one cannot 
ignore this fact.  

To emphasize the cosmic importance of reason the French scientists Leroy and Teilhard 
de Chardin introduced the term ''noosphere'' (that is, the sphere of reason) to signify that 
part of the biosphere where reason reigns. These ideas were taken up by V. P. Vernadsky 
(see his article entitled ''A Few Words About the Noosphere'').  In the preface to his main 
work Le phénomène humain (The Phenomenon of Man, translated by B. Wall, New York: 
Harper and Row Torchbook ed., 1965, p 36) Teilhard de Chardin writes:  
   

  In fact I doubt whether there is a more decisive moment for a thinking 
being than when the scales fall from his eyes and he discovers that he is not an 
isolated unit lost in the cosmic solitudes, and realizes that a universal will to live 
converges and is hominized in him. 

 In such a vision man is seen not as a static center of the world--as he for 
long believed himself to be--but as the axis and leading shoot of evolution, which 
is something much finer. 
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CHAPTER FIVE 

From Step To Step 
 

¾¾MATERIAL AND SPIRITUAL CULTURE 

A DISTINCTION IS MADE between ''material'' and ''spiritual" culture. We have put 
these words in quotes (the first time; henceforth they will parade themselves in the 
customary way, without quotes) because the distinction between these two manifestations 
of culture is arbitrary and the terms themselves do not reflect this difference very well. 
Material culture is taken to include society's productive forces and everything linked with 
them, while spiritual culture includes art, religion, science, and philosophy. If we were to 
attempt to formulate the principle on the basis of which this distinction is made, the 
following would probably be the best way: material culture is called upon to satisfy those 
needs which are common to humans and animals (material needs), while spiritual culture 
satisfies needs which, we think, are specifically human (spiritual needs). Clearly this 
distinction does not coincide with the distinction between material and spiritual on the 
philosophical level.  

The phenomenon of science, the chief subject of this book, is a part of spiritual culture. 
But science emerges at a comparatively late stage in the development of society and we 
cannot discuss this moment until we have covered all the preceding stages. Therefore we 
cannot bypass material culture without saying at least a few words about it. This is 
especially true because in the development of material culture we find one highly 
interesting effect which the metasystem transition sometimes yields. 

 

¾¾THE STAIRWAY EFFECT 

A baby is playing on the bottom step of a gigantic stone stairway. The steps are high 
and the baby cannot get to the next step. It wants very much to see what is going on there; 
now and again it tries to grab hold of the edge of the step and clamber up, but it cannot.... 
The years pass. The baby grows and then one fine day it is suddenly able to surmount this 
obstacle. It climbs up to the next step, which has so long attracted it, and sees that there is 
yet another step above it. The child is now able to climb it too and thus, mounting step 
after step, the child goes higher and higher. As long as the child was unable to get from one 
step to the next it could not ascend even a centimeter; but as soon as it learned how, not 
only the next step but the entire stairway became accessible. 
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Figure 5.1.  The stairway effect. 

A schematic representation of this ''stairway effect'' is shown in figure 5.1. The stairway 
effect forms the basis of many instances in which small quantitative transitions become 
large qualitative ones. Let us take as an example the classical illustration of Hegel's law 
of the change of quantity into quality: the crystallization of a liquid when the temperature 
drops below its melting point. The ability of a molecule oscillating near a certain 
equilibrium position to hold several adjacent molecules near their equilibrium positions is 
precisely the ''capability of transition to the next step.'' When this capability manifests 
itself as a result of a drop in temperature (decrease in the amplitude of oscillations) the 
process of crystallization begins and "step by step'' the positions of the molecules are set 
in order. Another well-known example is the chain reaction. In this case the transition to 
the next step is the self-reproduction of the reagents as a result of the reaction. In physical 
systems where all relationships important for the behavior of the system as a whole are 
statistical in nature, the stairway effect also manifests itself statistically; the criterion of 
the possibility of transition to the next step is quantitative and statistical. In this case the 
stairway effect can be equated with the chain reaction, if the latter term is understood in 
the very broadest sense. 

 

¾¾THE SCALE OF THE METASYSTEM TRANSITION 

WE ARE MORE INTERESTED in the case where the transition to the next step is 
qualitative, specifically the metasystem transition. For the stairway effect to occur in this 
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case it is clearly necessary for system X, which is undergoing the metasystem transition 
(see figure 5.2), to itself remain a subsystem of some broader system Y, within which 
conditions are secured and maintained for multiple transitions ''from step to step''--the 
metasystem transition beyond subsystem X.  

 

Figure 5.2.  The stairway effect within ultrametasystem Y.  The arrows indicate 
changes taking place in time. 

We shall call such a system Y an ultrametasystem in relation to the series X, X', X" , . . and 
so on. Let us take a more detailed look at the question of the connection between the 
metasystem transition and the system-subsystem relation. 

We have already encountered metasystem transitions of different scale. Metasystem 
transitions in the structure of the brain are carried out within the organism and do not 
involve the entire organism. Social integration is a metasystem transition in relation to the 
organism as a whole, but it does not take humanity outside of the biogeographic 
community, the system of interacting living beings on a world scale. There is always a 
system Y which includes the given system X as its subsystem. The only possible 
exception is the universe as a whole, the system Z which by definition is not part of any 
other system. We say ''possible'' exception because we do not know whether the universe 
can be considered a system in the same sense as known, finite systems. 

Now let us look in the opposite direction, from the large to the small, from the whole to 
the part. What happens in system X when it evolves without undergoing a metasystem 
transition? Suppose that a certain subsystem W of system X makes a metasystem 
transition. 
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Figure 5.3.  The metasystem transition W ÚÚ  W' within system X. 

This means that system W is replaced by system W', which in relation to W is a 
metasystem (and contains a whole series of W-type subsystems) but in relation to X is a 
subsystem analogous to W and performs the same functions in X as W had been 
performing, only probably better. Depending on the role of subsystem W in system X, the 
replacement of W with W'' will be more or less important for X. In reviewing the stages in 
the evolution of living beings during the cybernetic period we substituted the organism as 
a whole for X and the highest stage of control of the organism for W. Therefore the 
metasystem transition W Ò W' was of paramount importance for X. But a metasystem 
transition may also occur somewhere ''in the provinces,'' at one of the lower levels of 
organization. 

 

 

Figure 5.4.  Metasystem transition at one of the lower levels of organization. 

Suppose W is one of the subsystems of X., V is one of the subsystems of W, and U is one 
of the subsystems of V. The metasystem transition U Ò U' may greatly improve the 
functioning of V, and consequently the functioning of W also, although to a lesser degree, 
and finally, to an even smaller degree, the functioning of X. Thus, evolutionary changes 
in X, even though they are not very significant, may be caused by a metasystem transition 
at just one of the lower levels of the structure.  

These observations provide new material for assessing quantitative and qualitative 
changes in the process of development. If system X contains homogeneous subsystems W 
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and the number of these subsystems increases we call such a change quantitative. We 
shall unquestionably classify the metasystem transition as a qualitative change. We can 
assume that any qualitative change is caused by a metasystem transition at some 
particular level of the structure of the system. Considering the mechanics of evolution 
described above (replication of systems plus the trial and error method) this assumption is 
highly probable. 

 

¾¾TOOLS FOR PRODUCING TOOLS 

LET US RETURN to material culture and the stairway effect. The objects and 
implements of labor are parts, subsystems of the system we have called the "super-
being,'' which emerges with the development of human society. Now we shall simply call 
this super-being culture, meaning by this both its physical ''body'' and its method of 
functioning (''physiology''), depending on the context. Therefore, the objects and 
implements of labor are subsystems of culture. They may possess their own complex 
structure and, depending upon how they are used, they may be part of larger subsystems 
of culture which also have their own internal structures. 

Specifically, the division of material subsystems into objects of labor and implements of 
labor (tools) is in itself profoundly meaningful and reflects the structure of production. 
When a human being applies tool B to objects of a certain class A, this tool, together with 
objects A, forms a metasystem, in relation to subsystems A. Indeed, subsystem B acts 
directly upon subsystems A and is specially created for this purpose. (Of course, this 
action does not take place without the participation of the human hand and mind, which 
are part of any production system.) Thus, the appearance of a tool for working on certain 
objects that had not previously been worked on is a metasystem transition within the 
production system. As we have seen, the ability to create tools is one of the first results of 
the development of human traits; and because the human being remains the permanent 
moving force of the production system, the metasystem transition from object of labor to 
implement of labor may be repeated as many times as one likes. After having created tool 
B to work on objects in class A the human being begins to think of ways to improve the 
tool and manufactures tool C to use in making tools of class B. He does not stop here; he 
makes tool D to improve tools of class C, and so on. The implement of labor invariably 
becomes an object of labor. This is the stairway effect. It is important to assimilate the 
very principle of making tools (learning to climb up a step). After this assimilation 
everything follows of its own accord: the production system becomes an ultrametasystem 
capable of development. The result of this process is modern industry, a highly complex 
multilevel system which uses natural materials and step by step converts them into its 
''body''--structures, machines, and instruments--just as the living organism digests the 
food it has eaten. 
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¾¾THE LOWER PALEOLITHIC 

LET US CONSTRUCT a general outline of the development of material culture. The 
history of culture before the emergence of metalworking is divided into two ages: the 
Paleolithic (Old Stone Age) and the Neolithic (New Stone Age). In each age distinct 
cultures are identified, which differ by geographic region and the time of their existence. 
The cultures which have been found by archaeological excavation have been given names 
derived from the names of the places where they were first discovered.  

Traces of Paleolithic culture have been found in many regions of Europe, Asia, and 
Africa. They enable us to confidently make a periodization of the development of culture 
in the Paleolithic and divide the age into a number of stages (epochs) which are 
universally important for all geographic regions.  

The most ancient stages are the so-called Chellean, followed by the Acheulean and then 
the Mousterian. These three stages are joined together under the common name Lower 
(or Early) Paleolithic. The beginning of the Lower Paleolithic is dated about 700,000 
years ago and the end (the late Mousterian culture) is dated about 40,000 years ago.  

The Chellean and Acheulean cultures know just one type of stone tool--the hand ax. The 
Chellean hand ax is very primitive; it is a stone crudely flaked on two sides, resembling a 
modern axhead in shape and size. The typical Acheulean hand ax is smaller and much 
better made; it has carefully sharpened edges. In addition, signs of the use of fire are 
found at Acheulean sites.  

The tools of the Mousterian culture reveal a clear differentiation. Here we distinguish at 
least two unquestionably distinct types of stone tools: points and scrapers. Stoneworking 
technique is considerably higher in the Mousterian period than in the Acheulean. Objects 
made of bone and horn appear. Fire is universally used. We do not know whether the 
Mousterians were able to make fire, but it is clear that they were able to preserve it.  

In a biological sense the human being of the Lower Paleolithic was not yet the modern 
form. The Chellean and Acheulean cultures belonged to people (or semipeople?) of the 
Pithecanthropus and Sinanthropus types. The Mousterian was the culture of the 
Neanderthals. In the Lower Paleolithic the development of techniques for making tools 
(not only from stone but also from wood and other materials which have not survived 
until our day) proceeded parallel with the development of human physical and mental 
capabilities, with human evolution as a species. The increase in brain size is the most 
convincing evidence of this evolution. The following table shows the capacity of the 
cranial cavity in fossil forms of man, the anthropoid apes, and modern man: 
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Gorilla 600-685 cm3 

Pithecanthropus 800-900 cm3 

Sinanthropus 1.000-1,1100 cm3 

Neanderthal  1,100-1,600 cm3 

Modern Man 1,200-1,700 cm3 

 

Let us note that although the Neanderthal brain is only slightly smaller in volume than the 
brain of modern man it has significantly smaller frontal lobes and they play the chief role 
in thinking. The frontal lobes of the brain appear to be the principal storage area for 
"arbitrary'' associations. 

 
¾¾THE UPPER PALEOLITHIC 

AT THE BOUNDARY between the Lower and Upper Paleolithic (approximately 40,000 
years ago) the process of establishment of the human being concludes. The human being 
of the Upper Paleolithic is, in biological terms, modern man: Homo sapiens. From this 
moment onward nature invests all its ''evolutionary energy'' in the culture of human 
society, not in the biology of the human individual.  

Three cultures are distinguished in the Upper Paleolithic: Aurignacian, Solutrean, and 
Magdalenian. The first two are very close and are joined together in a single cultural 
epoch: the Aurignac-Solutrean. The beginning of this epoch is coincident with the end of 
the Mousterian epoch. Several sites have been found containing bones of both 
Neanderthals and modern man. It follows from this that the last evolutionary change, 
which completed the formation of modern man, was very significant and the new people 
quickly supplanted the Neanderthals.  

In the Aurignac-Solutrean epoch, stone -working technique made great advances in 
comparison with the Mousterian epoch. Various types of tools and weapons can be 
found: blades, spears, javelins, chisels, scrapers, and awls. Bone and horn were used 
extensively. Sewing appeared, as evidenced by needles which have been found. In one of 
the monuments of Solutrean culture a case made of bird bone and containing a whole 
assortment of bone needles was found, as was a bone fishing hook. By the Magdalenian 
epoch (about 15,000 years ago) throwing spears and harpoons had appeared. A 
noteworthy difference between the Upper Paleolithic and the Lower is the emergence of 
visual art. Cave drawing appeared in the Aurignac-Solutrean epoch and reached its peak 
in the Magdalenian. Many pictures (primarily of animals) have been found whose 
expressiveness, brevity, and exactness in conveying nature amaze even the modern 
viewer. Sculptured images and objects used for ornamentation also appear. There are two 
points of view on the question of the origin of art: the first claims art is derived from 
magic rituals, the second from esthetic and cognitive goals. However, when we consider 
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the nature of primitive thinking (as we shall below) the difference between these two 
sources is insignificant.  

Looking at material production as a system, the crucial difference between the Upper 
Paleolithic and the Lower is the appearance of composite implements (for example, a 
spear with a stone point). Their appearance can be viewed as a metasystem transition, 
because in making a composite implement a system is created from subsystems. Before, 
the maker would have viewed the two components as independent entities (the point as a 
piercing stone tool and the pole as a stick or wooden spear). This is not a simple 
transition; even in historical times, there could be found a group of people (the 
indigenous inhabitants of the island of Tasmania) who did not know composite 
implements.  

The Tasmanians no longer exist as an ethnic group. The last pure-blooded Tasmanian 
woman died in 1877. The information about the Tasmanian culture that has been 
preserved is inadequate and sometimes contradictory. Nonetheless, they may certainly be 
considered the most backward human group of all those known by ethnography. Their 
isolation from the rest of the human race (the Tasmanians' nearest neighbors, the 
Australian aborigines, were almost equally backward) and the impoverished nature of the 
island, in particular the absence of animals larger than the kangaroo, played parts in this. 
With due regard for differences in natural conditions, the culture of the Tasmanians may 
be compared to the Aurignac-Solutrean culture in its early stages. The Tasmanians had 
the stone hand ax, sharp point, crudely shaped stone cutting tool, wooden club (two types, 
for hand use and throwing), wooden spear, stick for digging up edible roots, and wooden 
spade for scraping mussels off rocks. In addition they were able to weave string and sacks 
(baskets) from grass or hair. They made fire by friction. But, to again repeat, they were 
not able to make composite tools--for example, to attach a stone working part to a 
wooden handle. 

 
¾¾THE NEOLITHIC REVOLUTION 

UNLIKE THE PALEOLITHIC CULTURES, the Neolithic cultures (which are known 
from both archaeological and ethnographic findings) show great diversity, specificity, 
and local characteristics. In terms of techniques of producing tools the Neolithic is an 
elaboration of the qualitative jump (metasystem transition) made in the late Paleolithic: 
composite tools made using other tools. Following this route human beings made a series 
of outstanding advances, the most remarkable of which is clearly the invention of the 
bow. Great changes also took place in clothing and in the construction of dwellings.  

Although the Neolithic cannot boast of a large-scale metasystem transition in regard to 
tool manufacture, a metasystem transition of enormous importance nevertheless did occur 
during this period. It concerned the overall method of obtaining food (and therefore it 
indirectly involved tools also). This was the transition from hunting and gathering to 
livestock herding and farming--sometimes called the Neolithic revolution. The animal 
and plant worlds, which until this had been only external, uncontrolled sources of food, 
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now became subject to active influence and control by human beings. The effects of this 
transition spread steadily. We are thus dealing with a typical metasystem transition.  

Archaeologists date the emergence of farming and livestock herding to about 7,000 years 
ago, emphasizing that this is an approximate date. The most ancient cereal crops were 
wheat, millet, barley, and rice. Rye and oats appeared later. The first domesticated animal 
was the dog. Its domestication is dated in the Early Neolithic, before the emergence of 
farming. With the transition to farming, people domesticated the pig, sheep, goat, and 
cow. Later, during the age of metal, the domesticated horse and camel appeared. 

 
¾¾THE AGE OF METAL 

THE AGE OF METAL is the next page in the history of human culture after the 
Neolithic. The transition to melting metal marks a metasystem transition in the system of 
production. Whereas the material used earlier to make tools (wood, stone, bone, and the 
like) was something given and ready to use, now a process, melting metal, emerged and it 
was directed not to making a tool but rather to making the material for the tool. As a 
result people received new materials with needed characteristics that were not found in 
nature. First there was bronze, then iron, various grades of steel, glass, paper, and rubber. 
From the point of view of the structure of production the age of metal should be called 
the age of materials. Strictly speaking, such crafts as leather tanning and pottery, which 
originated earlier than metal production, should be viewed as the beginning of the 
metasystem transition to the age of materials. But there is a crucial phase in each 
metasystem transition when the advantages of creating the new level in the system 
become obvious and indisputable. For the age of materials this phase was the production 
of metals, especially iron.  

The most ancient traces of bronze in Mesopotamia and Egypt date to the 4th millennium 
B.C. Iron ore began to be melted by 1300 B.C. 

 
¾¾THE INDUSTRIAL REVOLUTIONS 

THE NEXT qualitative jump in the system of production was the use of sources of 
energy other than the muscular energy of human beings and animals. This, of course, is 
also a metasystem transition because a new level of the system emerges: the level of 
engines which control the movement of the working parts of the machine. The first 
industrial revolution (eighteenth century) radically changed the entire appearance of 
production. Improvement of engines becomes the leitmotif of technical progress. First 
there was the steam engine, then the internal combustion engine, and then the electric 
motor. The age of materials was followed by the age of energy. 

Finally, our day is witness to one more metasystem transition in the structure of 
production. A new level is emerging, the level of control of engines. The second 
industrial revolution is beginning, and it is obvious that it will have a greater effect on the 
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overall makeup of the system of production than even the first did. The age of energy is 
being replaced by the age of information. Automation of production processes and the 
introduction of computers into national economies lead to growth in labor productivity 
which is even more rapid than before and give the production system the character of an 
autonomous, self-controlling system. 

 
¾¾THE QUANTUM OF DEVELOPMENT 

THE SIMILARITY between successive stages in the development of technology and the 
functions of biological objects has long been noted. The production of industrial 
materials can be correlated with the formation and growth of living tissue. The use of 
engines corresponds to the work of muscles, and automatic control and transmission of 
information corresponds to the functioning of the nervous system. This parallel exists 
despite the fundamental difference in the nature of biological and technical systems and 
the completely different factors that cause their development. Nonetheless, the similarity 
in the stages of development is far from accidental. It arises because all processes of 
development have one common feature: development always takes place by successive 
metasystem transitions. The metasystem transition is, if you like, the elementary unit, the 
universal quantum of development. Therefore it is not surprising in the least that having 
compared the initial stage of development of two different systems--for example 
industrial materials and living tissue--we receive a natural correlation among later stages, 
which are formed by the accumulation of these universal quanta. 

 
¾¾THE EVOLUTION OF THOUGHT 

OUR NEXT TASK on the historical plane is to analyze the development of thought 
beginning with the most ancient phase about which we have reliable information. This 
phase is primitive society with Late Paleolithic and Early Neolithic culture. But before 
speaking of primitive thinking, before ''putting ourselves in the role'' of primitive people, 
we shall investigate thinking in general, using both the modern thinking apparatus as an 
investigative tool and modern thinking as an object of investigation that is directly 
accessible to each of us from personal experience. This is essential in order that we may 
clearly see the difference between primitive thinking and modern thinking and the 
general direction of the development of thinking. The investigation we are preparing to 
undertake in the next two chapters can be defined as a cybernetic approach to the basic 
concepts of logic and to the problem of the relationship between language and thinking. 

 



  

 99

CHAPTER SIX  

Logical Analysis of Language 
 
¾¾ABOUT CONCEPTS AGAIN 

LET US BEGIN with the most fundamental concept of logic, the concept of the 
"concept.'' In chapter 2 we gave a cybernetic definition of the concept in its Aristotelian 
version-as a set of situations at the input of a cybernetic system. To master a concept 
means to be able to recognize it, that is, to be able to determine whether or not any given 
situation belongs to the set that characterizes this concept. This definition applies equally 
to complex cybernetic systems of natural origin about whose organization we have only a 
general idea (for example: the brain of an animal) and to those relatively simple systems 
we ourselves create for applied and research purposes. 

In the first case we arrive at the conclusion, that the system recognizes a certain concept, 
by observing external manifestations of the system's activity. For example, when we see 
that a dog becomes happily excited when it hears its master's voice and responds in a 
completely different way to all other sounds we conclude that the dog has the concept of 
''master's voice.'' This concept develops in the dog naturally, without any special effort by 
the experimenter. To determine the maximum capabilities of the dog brain the 
experimenter may create unusual conditions for the animal and watch its reaction. I. P. 
Pavlov and his school conducted many such experiments. If a dog is shown plywood 
circles and squares of different sizes and colors and is fed after the presentation of a circle 
and punished after the presentation of a square, the dog will learn to distinguish the circle 
and the square and will respond differently when these shapes are presented. Thus, the 
dog is capable of recognizing certain general (abstract) concepts-in this case the concepts 
of circle and square abstracted from the features of size and color. This means we must 
conclude that the dog possesses the abstract concepts of ''circle'' and "square." 

But no sooner do we say this than we begin to feel that perhaps this conclusion was too 
hasty. The statement that the dog can possess the concept of ''master's voice'' (referring, 
of course, to the voice of a specific person) can be accepted without reservation, but the 
statement that the concept of square is accessible to the dog seems true in one sense and 
not in another. We shall take note of this now and return to the question later. In the 
meantime let us examine the dog's mental capabilities by indicating the very simple 
concepts known to be inaccessible to the animal. Suppose that you show the dog a box 
divided into two parts, each of which contains several billard balls. You want to force the 
dog to distinguish the case where the number of balls in each part is equal from the case 
where the number of balls in the parts differs. It is a safe bet that no matter how much 
you feed the dog and no matter how much you beat it you will not achieve your purpose. 
The concept of different numbers is inaccessible to the dog.  

Cybernetic systems possessing the ability to recognize concepts are also created 
artificially. Their importance is steadily growing in connection with cybernetic science 
and production. The development of artificial recognition devices (discriminators) plays a 
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crucial part in understanding the general principles and concrete mechanisms of the 
working of the brain. These devices serve as models with which people try to lift the veil 
from the process of thinking. The creation of an "artificial brain'' which performs, at least 
partially, the same functions as the natural brain provides indications of how to approach 
investigation of the activity of the natural brain. It is interesting that one of the first 
results of comparing artificial and natural recognition systems was the conclusion that 
natural systems are very narrowly goal-directed and specialized. Within their own 
specialization they reach a high level of refinement, but they are completely impotent 
when the problem goes beyond this framework. Recognizing a person by voice is an 
extremely difficult problem for artificial cybernetic devices, but the brain of a dog 
resolves it easily. At the same time the problem of comparing the number of billard balls, 
which is very simple for an artificial system, is beyond the ability of a dog. 

In chapter 2 we considered a cybernetic discriminator that was fed information by signals 
from light-sensitive receptors arranged on a screen. We called the situation, that is to say 
the aggregate of values of all signals from the receptors, the ''picture''; it coincides with 
the image on the screen with a precision down to semitones. This device (picture 
discriminator) will serve as an illustration in this chapter too. 

 
¾¾ATTRIBUTES AND RELATIONS 

SO FAR, the examples of concepts we have given have fit within the definition of the 
concept as a set of situations. But as it turns out, this definition does not apply to every 
concept that seems intuitively clear to us and manifests itself in language. For example' 
let us take the concept expressed by the prepositions ''inside'' or ''in.'' For those who do 
not like to see a concept expressed by a preposition, we can express it by phrases such as 
"to be located inside" or "location in." This concept is applicable to a device to whose 
input ''pictures'' are fed.  

 

Figure 6.1. 

In figure 6.1 for example, spot A is inside contour B. But can we correlate the concept of 
''inside'' to some definite set of pictures? No, we cannot. This can be seen, for example, 
from consideration of the picture shown in figure 6.2.  
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Figure 6.2. 

In figure 6.2 a spot A is inside contour B, but not inside contour C. In figure 6.2 b, spot A 
is outside contour B while spot C is inside it.  

Could these pictures be classed with a set of situations for "inside" which we would have 
to construct? Any answer will be unsatisfactory and arbitrary, because the question itself 
is meaningless. The concept of ''inside'' does not characterize a picture (situation) as a 
whole but rather the relation between two definite objects, details in the picture. As long 
as these objects are not indicated, a definite spot and a definite contour, it is meaningless 
to ask the question ''inside or not'''? 

 
¾¾ARISTOTELIAN LOGIC 

WE SHALL call the concepts that express attributes of the situation as a whole 
''Aristotelian,'' because Aristotle's logic is simply a consistent theory of the correct use of 
such concepts. For each Aristotelian concept there is a definite corresponding set of 
situations, specifically those situations in which the attribute expressed by this concept 
occurs. Therefore the Aristotelian concept can also be described as a certain set or class 
of situations (phenomena, objects in that extremely general sense in which these terms 
are used here; they are all equivalent to one another and to the term ''something'' [in 
Russian nechto] which is the most precise but also the most inconvenient because of the 
difficulties with Russian grammar its use entails). Therefore all the laws of Aristotelian 
logic can also easily be derived from the simplest properties of operations on sets. 

For example, let us take the classical syllogism: 

All men are mortal 

Socrates is a man 

Therefore Socrates is mortal. 

Three Aristotelian concepts participate in this reasoning: ''man,'' ''mortal,'' and ''Socrates.'' 
The concept of ''man'' is characterized by the set of situations in which we say, ''This is a 
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man.'' The same thing applies to the other concepts. To make the properties of the sets 
graphically clear let us represent each situation as a point within a certain square, as is 
shown in figure 6.3. 

 

Figure 6.3. 

 

Then this square will embody the set of all conceivable situations corresponding to the 
maximally general concept ''something.'' The other concepts, to which deterrent sets of 
points correspond, will be shown by different areas inside the square. The statement that 
''all men are mortal,'' in other words ''every man is mortal," signifies that every point 
included in the area of ''man'' is also within the area of ''mortal'' (''mortal being''), which is 
to say that the ''man'' area is entirely inside the ''mortal'' area. In exactly the same way the 
second premise of the syllogism means that the ''Socrates'' area is entirely inside the 
''man'' area. It follows from this that the ''Socrates'' area is within the ''mortal'' area, or in 
other words the statement "Socrates is mortal'' is true.  

Figure 6.4 demonstrates the correctness of the following deduction rule (''disamis'' in 
logical terminology): 

All A are B  

Some A are C  

Therefore, some B are C.  
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Figure 6.4. 

Aristotle's logic played an important role in the development of European culture. But it 
does not go deeply enough into the structure of our thinking: it is not able to reflect the 
process of breaking situations up into distinct parts (objects) and investigating the 
relations among these parts. In discussing the attributes of objects Aristotelian logic is 
completely adequate, because an isolated object can be pictured as a certain situation. 

Forming the set of such situation-objects, we obtain an abstract concept that expresses 
one of the properties of the object. Things are different with relations. Aristotelian logic 
can express the concept of the aggregate of objects which are in a given relation, but it 
has no means for expressing the concept of the relation as such. We can represent a set of 
pictures that have the form of contours with spots in the middle; this set generates the 
Aristotelian concept (attribute) of ''being" a contour with a spot in the middle.'' But there 
is no Aristotelian concept for ''being inside.'' Aristotle's logic is too global and superficial. 

Let us take the following deduction: 

Ivan is Peter's brother  

 
Therefore, Peter is Ivan's brother.  

The inference is correct, but to substantiate it one must state openly the premise which is 
taken for granted here: that the relation of ''brothers'' is symmetrical. This premise can be 
expressed by the phrase: ''If x is the brother of y, then y is the brother of x ." 

In this the letters x and y, represent any persons of the male sex. But this symbolism goes 
beyond the limits of Aristotelian logic. 

Can this syllogism be expressed in the language of Aristotle's logic? It can if we consider 
not individual people but pairs of people-or, more exactly, ordered pairs, which is to say 
pairs where one person is assigned the number one and the other receives the number 
two. Here is this syllogism, which is completely proper from the point of view of 
Aristotelian logic. 
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The pair (Ivan and Peter) possesses the attribute: the first is the brother of the 
second 

Each pair possessing the attribute: ''the first is the brother of the second'' 
possesses the attribute: ''the second is the brother of the first'' 
______________________________________________________________ 

Therefore the pair (Ivan and Peter) has the attribute: "the second is the 
brother of the first.''  

Even though formally it is the same reasoning used before, this clumsy syllogism misses 
the mark because it does not reflect the main element in our initial syllogism, the 
symmetry in the relation of ''brothers.'' The attributes ''the first is the brother of the 
second'' and ''the second is the brother of the first'' are in no way broken down, in no way 
connected with one another, and in no way connected with the fact that they are applied 
to objects which have the appearance of an ordered pair. 

It was not accidental that we began our cybernetic investigation of concepts from 
Aristotelian concepts. They are simpler because they permit definition exclusively in 
terms of input and output states without referring to the internal structure of the 
recognition system. The same thing occurred in the history of human thought. People first 
became aware of the existence of Aristotelian concepts: awareness of relations came only 
much later. 

Because the chief thing in mathematics is to investigate relations among objects, 
Aristotelian logic is completely inadequate for expressing mathematical proofs. This was 
noted long ago; the examples from mathematics which traditional logic uses speak for 
themselves: they are extremely primitive and uninteresting. Until the very end of the 
nineteenth century, when a new (''mathematical'') logic began to be created, mathematics 
and logic developed independently of one another. 

 
¾¾HEGEL'S DIALECTIC 

IN PHILOSOPHY Hegel delivered the decisive blow against Aristotelian logic. With his 
dialectic he showed that the world must be viewed not as an aggregate of objects that 
possess certain attributes, but rather as an aggregate of objects that stand in certain 
relations to one another. This does not exclude attributes from consideration, of course, 
for the concept of the relation is much broader than the concept of the attribute.  

A relation may be defined for any number of objects. Specifically, the number of objects 
may be one; such a relation is an attribute, a property. Pair relations, that is to say 
relations between two objects, are the clearest intuitively and at the same time the most 
important. Two is the minimum number of objects for which the relation ceases to be an 
attribute, and becomes a relation proper. The number two lies at the foundation of the 
Hegelian method, which is reflected in the very term ''dialectic." 
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The most important features of Hegel's dialectic follow directly from the description of 
phenomena in terms of relations, not attributes. Above all, what follows from this 
approach is the theory of the interaction and interrelatedness of everything that exists. 
Further: If two elements are in correspondence and do not contradict one another, they 
act as something whole and their common attributes become paramount while the 
interaction, the relation, between them withdraws to a secondary position. Relations 
among elements, objects, manifest themselves to the extent that they are relations of 
opposition, contradiction, and antagonism. Thus, the idea of the struggle of opposites 
plays an important part in Hegel. 

When considering the relation between the state of an object at a given moment and the 
state of this same object at some other moment in time we come to the concept of change. 
Change is the relation between objects separated by a time interval. In the language that 
operates with attributes but not with relations, change cannot be expressed. The most that 
such language is capable of is depicting a series of states of the object which are in no 
way interconnected. 

Zeno's aporia concerning the arrow in flight is a brilliant expression of this inability. Let 
us consider the arrow in flight. Take a certain moment in time. At this moment the arrow 
occupies a definite position in space. Take another moment. The arrow again occupies a 
completely determinate position in space. The same thing is true for any other moment. 
This means that the arrow always occupies a definite position in space. This means that it 
is standing in place. In Aristotelian concepts the world is represented as something static, 
frozen, or at best mechanically duplicated with certain variations. On the other hand, 
having made the investigation of relations its object, the dialectic studies things from the 
point of view of their change, movement, and development. It discloses the historical 
causality and relativity (from the word ''relation''!) of things which are represented as 
unconditional and external when described in Aristotelian concepts. Combining the 
concept of opposition with the concept of the relation among states at successive 
moments in time generates the concept of the negation and the concept of the negation of 
the negation. The dialectic is dynamic and revolutionary.  

In relation to Aristotelian logic, Hegel's dialectic acted as a destructive force-and not just 
because of its ''general'' revolutionary nature but also because it pointed out the many 
contradictions that arise when a description of phenomena which demands the language 
of relations is squeezed into the narrow framework of the language of attributes. In Hegel 
and his followers these contradictions were often surrounded with a certain exalted aura 
and, one might say, a semi-mystical significance. This reflected, on the one hand, the 
idealistic orientation of Hegel's philosophy, and on the other hand a general characteristic 
of new doctrines, theories, and movements: in the initial stages of their development, 
trying to liberate themselves from the old intellectual framework, they prefer a 
paradoxical, exaggerated form and become heroic and romantic. Hegel's dialectic is the 
heroic epoch of the new logic, when the old logical formalism had been broken but the 
new one was not yet created. Therefore things seemed contradictory and not subject to 
formalisation (''dialectical'') which later proved to be beautifully ordered and formalized. 
To modern thinking, which makes free use of the language of relations and is armed with 
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analysis of logical concepts and constructions, the Hegelian style of thinking appears as 
obscure philosophizing about things which are clear. The following reasoning is a 
crudely simplified, caricature-like sketch of the Hegelian dialectical contradiction, 
showing the source from which this contradiction arises.  

''Let us put the question: is the number 1,000 large or small? It is large because it is much 
more than one. It is small because it is much less than 1 million. This means that it is both 
large and small at the same time. A dialectical contradiction. What is large is at the same 
time not large, A is not-A.'' 

The concepts of ''large'' and ''small" were considered here as attributes of objects 
(numbers). In fact these are not attributes but concealed (by means of the grammatical 
category of the adjective) relations. An exact meaning can be given only to the concepts 
"larger'' and ''smaller.'' If we analyze the reasoning given above from this point of view it 
will prove to be simply nonsense. This caricature was not directed against Hegel (the 
credit due him for creating the new logic is indisputable) but rather against those who 
take an uncritical attitude toward Hegel's dialectical method and, in the second half of the 
twentieth century, propagate the style of thinking of the first half of the nineteenth 
century, ignoring the enormous progress made by logic in this century and a half. 

 
¾¾MATHEMATICAL LOGIC 

THE DECISIVE FACTOR in the advance of logic was the development of mathematical 
logic in the late nineteenth and early twentieth centuries. This process was generated by 
the needs of mathematics and was carried out by mathematicians. The gap between 
mathematics and logic was finally overcome. Having expanded its language and made it 
mathematical. Logic became suitable for describing and investigating mathematical 
proof. On the other hand, mathematical methods began to be used to solve logical 
problems. 

Having gained a base of operations in the field of mathematics, the new logic began to 
penetrate the natural sciences and philosophy. In this process the role of the mathematical 
element proper (the use of mathematical methods) declined. Nonetheless all modern logic 
is often called ''mathematical'' because of its language and origin. 

 
¾¾OBJECTS AND STATEMENTS 

BEFORE GOING on in our analysis of language and thinking we need to give a short 
sketch of modern logic and those concepts which are related to language. For now we 
will leave the concepts related to the logical deduction (proof) aside. 

Modern logic divides everything that exists into objects and statements. In natural 
language statements are represented by sentences or groups of sentences and objects are 
depicted by words or combinations of words which make up the sentences. Examples of 
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objects are ''heron,'' ''Uncle Kolya," or ''kolkhoz chairman.'' Examples of statements are: 
''The heron died,'' or ''Uncle Kolya was elected chairman of the kolkhoz.'' Objects are 
most often expressed by nouns, but this is not mandatory. For example, in the statement 
''To smoke is harmful,'' ''to smoke'' is the object. In application to mathematics objects are 
usually called terms and statements are called relations.  

Examples of terms are:  

(1) 3.14; 

(2) ax2 + bx + c; 

(3)∫ab  f(z)dz. 

 

Examples of relations are:  

(1) ax2 + bx + c = 0; 

(2) 0 < z � 1, 

(3) no matter what natural number n > 1 may be, a simple number p will be found which 
is a divisor of number n;  

(4) the sum of the squares of the legs of a right triangle is equal to the square of the 
hypotenuse. 

In logic the concepts ''object'' and ''statement'' are considered primary, intuitively clear, 
and indefinable. The formal difference between them is that a statement may be said to be 
true or false. Thus, the examples (3) and (4) of mathematical relations above are true, 
while the first and second may be true or false depending on the values of the variables x 
and z. The concepts of truth and falsehood are not applicable to objects.  

In logic objects and statements, which are considered elementary-meaning that they 
cannot be broken down into distinct constituent parts-are represented by letters. Objects 
are usually represented by small letters and statements by capital letters. We shall follow 
this system but we shall introduce one more convention. For clarity in writing and to 
reduce the number of verbal explanations we shall sometimes designate elementary 
objects and statements with words and phrases within quotation marks. Therefore phrases 
in quotes will be considered equal to letters.  

Objects and statements which are not elementary are obviously constructed from other 
objects and statements. We must now point out the methods of construction. Where there 
are two types of elements (objects and statements) and assuming that the elements 
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serving as building material all belong to one type, we find that there are four possible 
types of constructions. We have reduced them to the following table. 

What Is Constructed 
What It Is 
Constructed From Name of the Construction  

Statement  Statements  Logical Connective  
Statement  Objects  Predicate  
Object  Statements  --  
Object  Objects  Function  

 
 

¾¾LOGICAL CONNECTIVES 

THERE ARE FIVE widely used logical connectives. Negation (depicted by the symbol -
), conjunction (sign &), disjunction (sign V), material implication (sign =>), and 
equivalence (sign ⊃), and equivalence (sign ≡ ). 

The statement -A  (read ''not A'') means that statement A is false. In other words, -A is true 
when A is false and it is false when A is true. The statement A & B (read ''A and B'') 
signifies the assertion that both A and B are true. It is true only if both statement A and 
statement B are true. 

The statement A V B ("A or B") is true if at least one of the two statements A and B is 
true. 

The statement A ⊃ B is read ''A entails B'' or "if A then B.'' This is untrue if A is true and B 
is false but is considered true in all other cases. 

Finally, the statement A � B is true if statements A and B are either both true or both false. 

Parentheses are used to designate the structure of connections, similar to the way they are 
used in algebra to designate the order of performance of arithmetic operations. For 
example, the statement -A & B means "S is untrue but B is true," while the statement - (A 
& B ) means ''it is untrue that both A and B are true.'' And, just as in algebra, an order of 
seniority among connectives by the tightness of the bond is established to reduce the 
number of parentheses. Above we listed the connectives in order of decreasing tightness. 
For example, the conjunction is a tighter bond than implication and therefore the 
statement A ⊃ B & C is understood as A ⊃ (B & C), not as (A ⊃ B) & C. This corresponds 
to algebra where A + B x C is the same as A + (B x C), but not the same as (A + B) x C.  

Let us give a few examples of composite statements. A common Russian tongue-twister 
is ''The heron withered, the heron dried, the heron died'' [in Russian, ''tsaplya chakhla, 
tsaplya sokhla, tsaplya sdokhla'']. This statement may be written as follows: ''The heron 
withered'' & ''the heron dried'' & ''the heron died." The relation 0<Z< 1 is the conjunction 
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''Z>0'' & ''Z< 1,'' while the relation |Z| > 1 is the disjunction ''Z> 1"V''Z< -1.'' The 
definition given above for the logical connective ≡ can be written as follows: 

[(A ≡ B) ⊃ (A & B) V (-A &-B)] & [(A & B) V (-A &-B) ⊃ (A≡ B)] 

We will let the reader translate the following statement into conventional language: ''The 
light is turned on'' & ''the bulb is not burning'' ⊃⊃  ''there is no electricity" V ''the plugs 
have burned out'' V ''the bulb is burned out.'' If we consider that statements can only be 
true or false, and consider nothing else about them, then the connectives we have listed 
are enough to express all conceivable constructions made of statements. Even two 
connectives are adequate-for example, negation and conjunction or negation and 
disjunction. This situation obtains, in particular, in relation to mathematical statements. 
Therefore other connectives are not used in mathematical logic.  

But natural language reflects a greater diversity in the evaluation of statements than 
simply separating them into true statements and false. For example, a statement may be 
considered meaningless or implausible even though it is possible ("There are probably 
wolves in this forest''). Special branches of logic which introduce other connectives are 
devoted to these matters. For modern science (unlike classical mathematical logic) these 
branches are not very important and we shall not deal with them. 

 
¾¾PREDICATES 

A CONSTRUCTION that associates a statement with certain objects is called a predicate. 
Predicates are divided into one-place, two-place, three-place, and so on according to the 
number of objects they require. Functional notation is used to represent them. The 
predicate can be written as a function with unfilled places for variables, for example:  

P( ),  

L( , ), 

I( ,  , ) 

or in the form 

P(x), 

L(x, y), 

I(x, y, z) 

having stipulated that x, y and z are object variables, that is, symbols which must in the 
last analysis be replaced by objects-although which objects is not yet known. But the 
second form of notation, strictly speaking, no longer represents a predicate; rather, it is a 
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statement containing object variables. In addition to capital letters we shall also use 
words and phrases within quotation marks, for example: ''red'' (x) or ''between" (x, y, z) 
and special mathematical signs such as < (x, y). 

The one-place predicate expresses an attribute of an object while a predicate with more 
than one variable expresses a relation among objects. If the places for variables in the 
predicate are filled, then we are dealing with a statement which asserts the existence of 
the given attribute or relation. The statement ''red'' (''ball") means that the ''ball'' possesses 
the attribute ''red.'' The construction < (a,b) is equivalent to the relation (inequality) a < b. 
By joining predicate constructions with logical connectives we obtain more complex 
statements. For example we formerly wrote the |Z| > 1 without breaking the statement 
down into elements, but now we write it 

> (z, "1" )V < (z, "-1" ) 

 
¾¾QUANTIFIERS 

IN MATHEMATICS a large role is played by assertions of the universality of a given 
attribute and of the existence of at least one object that possesses the given attribute. To 
record these assertions the following so-called quantifiers are introduced: universal 
quantifiers ∀∀ and the existential quantifier ∃∃ . Let us suppose that a certain statement S 
contains a variable (indeterminate object x, therefore we shall write it in the form S(x). 
Then the statement (∀∀ x)S(x) means that S(x) occurs for all x, while the statement (∃∃x)S(x) 
represents the assertion that there exists at least one object x for which the statement S(x) 
is true.  

A variable included in a statement under the sign of a quantifier is called a bound 
variable, because the statement does not depend on this variable just as the sum 

Sum (i=n to m) Si 

does not depend on the indexes i. The bound variable may be replaced by any other letter 
that does not coincide with the remaining variables and the meaning of the statement will 
not change as a result. A variable which is not bound is called free. The statement 
depends entirely on the free variables it contains.  

Here are some examples of statements containing quantifiers.  

1) (∀∀ x) (∀∀ y) [''brother'' (x, y ) & ''man'' (y) ⊃ ''brother'' (y, x)].  

For every x and every y, if x is the brother of y and y is a man then y is the brother of x. 

2) If D(x, y) is used to represent the statement ''x is a divisor of y,'' then one of the 
relationships cited above as an example of a statement will be represented in the form 
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(∀∀n)[>(n1"1" ) ⊃ (∃∃p)D(P1 n)] 

(∃∃x) W (x) ⊃ - (∀∀ x) - W(x) 

The last relation is true for any statement W(x) and shows that there is a connection 
between the universal and existential quantifiers. From the existence of object x for which 
W(x) is true it follows that the assertion that ''W(x) is untrue for all x" is not true. 

A quantifier is also, in essence, a logical connective. The attribution of a quantifier 
changes a statement into a new statement which contains one less free variable. The 
difference from the connectives we considered above is that one must indicate, in 
addition to the statement, the free variable that must be coupled. The coupling of a 
variable means that concrete objects will be put in its place. If the number of objects that 
can be substituted for the variable is finite then the quantifiers can be viewed simply as 
convenient abbreviations because they can be expressed by the logical connectives of 
conjunction and disjunction. Suppose variable x can assume ~l values, which we shall 
designate by the letters x1, x2, . . . , xn. Then the following equivalences will occur. 

(∀∀n)W (x) <=>W (x1) &W (x2) & . . . &W (xn), 

(∃∃x) W (x) - W (x1) VW (x2) V . . . VW (xn) 

 
  ¾¾THE CONNECTIVE "SUCH THAT" 

THE THIRD LINE of our table describes a construction that correlates an object to a 
statement. In natural languages this construction is very widely used. When we say ''red 
ball,'' we have in mind an object "ball" which possesses the attribute ''red,'' that is, it is 
such that the statement ''red'' (''ball'') is true. We transfer the statement about the object to 
the adjective which modifies the noun by which we designate an object; in other cases 
this can be achieved by participles, participial constructions, and constructions with the 
connectives "which'' and "such that." If we carry this analysis further we shall find that 
the noun, like the adjective, indicates first of all a definite attribute or attributes of an 
object. Like the word ''red,'' the word ''ball'' depicts a certain class of objects and may be 
correlated to a one-place predicate, "is a ball'' (x), or simply "ball'' (x). Then ''red ball" is 
such an object that the statements ''ball'' (a) and ''red'' (a) are true; in other words, the 
statement ''ball'' (a) & "red" (a) is, true. 

Notice that there are three independent elements operating in the logical notation: the 
letter a and the objects ''ball'' and ''red,'' while in writing in natural language there 
continue to be just two, ''red'' and ''ball.'' But the letter a, which is introduced in logical 
notation to identify the given object and distinguish it from others (and which is called 
the identifier), does not completely disappear in natural notation. It has been transferred 
to the concept ''ball,'' changing it from an attribute to an object' Unlike the word ''red,'' the 
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word ''ball'' identifies; you can say, ''This is the ball we lost yesterday'' or I have in mind 
the same ball I was talking about in the previous sentence." 

But what is an ''object''? 

 

¾¾THE PHYSICAL OBJECT AND THE LOGICAL OBJECT 

EXPERIENCE TEACHES US that the world we live in is characterized by a certain 
stability and repetition (and also, of course, by constant movement and variation). 
Suppose we see a tree. We walk away from it and the image of the tree on the retina of 
our eye changes in relationship to our movements. This change follows a definite law 
which is very familiar to us from observation of other objects. But when we return to our 
former place the image becomes almost exactly the same as it was before. Then we say, 
''This is the tree,'' having in mind not only the image of the tree-the mental photograph-at 
the given moment in time but also the situations at nearby moments. If we are talking 
about classifying distinct situations by themselves, without considering their relations to 
other situations, then there is no difference at all between the noun and the adjective; the 
concept ''ball,'' just like the concept ''red,'' is completely defined by indicating a certain set 
of situations, and the discriminator (natural or artificial) of these concepts need only be 
able to use the following sentences correctly: ''This is red,'' ''This is not red,'' "This is a 
ball," and ''This is not a ball.''  

It is different when we must classify time sequences of situations rather than separate 
situations; we shall represent them as if they were a movie film whose frames each depict 
the situation at a given moment. In the movie film ''ball'' is not simply a detail of the 
situation in one frame; it is a detail that recurs in many. The discriminator of the concept 
''ball'' cannot simply say, ''Yes, my friends, this is a ball!'' It must identify the particular 
details in the frames, saying: ''Here is how the ball looks in frame no. 137; here is the 
same ball in frame no. 138; here it is again in frame no. 139; and here is what it looked 
like in frame no. 120,'' and so on. The detail of the situation which is called ''the same 
ball'' can change quite considerably because of change in the position of the eye relative 
to the ball or a change in the shape of the ball itself, but the ball itself is invariably and 
absolutely the same. This invariability reflects the relative and temporal invariability we 
find in reality. It is as if we were to draw a line in time connecting the details in the 
different frames of film and declare that everything on this line is ''the same'' object. It is 
this line, in combination with a certain set of attributes (characteristics), that forms the 
concept of the physical object.  

The logical concept of the object reflects a property of physical objects-they preserve 
their identity. The object of logic is simply an identifier. Sameness is its only attribute, as 
reflected in our imaginary connecting line. If there are several different classes of objects, 
then various types of identifiers are ordinarily used to denote the objects in different 
classes. For example, line segments will be represented by small letters, points by capital 
letters, angles by Greek letters, and so on. But more concrete attributes characteristic of 
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objects are written in the form of distinct assertions which include the introduced 
designations. This makes it possible to get by without a construction involving the 
connective ''such that.'' It is true that at the very beginning of his famous treatise Eléments 
de mathematique Bourbaki introduces the designation [tau] x[A(x)] for a certain object 
which possesses attribute A(x), that is, such that A{[tau]x[A(x)]} is a true statement. After 
this, however, the designation disappears from his text. Thus a definite name for the 
construction that associates an object with a statement has not even been established and 
we are forced to leave a blank in our table. In the last analysis, a complete division of 
labor between identifiers and statements is more convenient. 

For example let us take the sentence: ''The reddish-brown dog of Lieutenant Pshebyssky's 
widow killed the stray cat.'' When written in the language of logic this sentence breaks 
down into several statements which are implicitly contained in it and expressed by means 
of the grammatical category of attribution. They can be joined into one statement using 
the conjunction sign, but we can obtain a more conventional and readable notation if we 
simply write out all the assertions being made-each on a new line separated by commas 
instead of conjunction signs. Assuming that the meaning of the attributes and relations 
being introduced is clear from the context, we receive the following equivalent of the 
above sentence: 

"dog'' (a), 

"reddish-brown'' (a), 

"belongs'' (a, b), 

"widow'' (b, c), 

"Lieutenant Pshebyssky" (c), 

"killed'' (a, d),  

"cat'' (d),  

"stray'' (d). 

 
¾¾FUNCTIONS 

IN THE EXAMPLE, the predicate, Lieutenant Pshebyssky (c), is the only one that is 
plainly not elementary. In the attribute ''to be Lieutenant Pshebyssky'' we distinguish two 
aspects: to have the rank of lieutenant and to have the surname Pshebyssky. That is why 
this predicate is expressed by two separate words. Of course, we could have put each of 
these words in the form of a distinct predicate, but the fact that ''lieutenant'' is the rank  of 
object c and ''Pshebyssky'' is the surname of it would not have been reflected in this case, 
and therefore we considered such a separation meaningless.  
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''Surname'' and ''rank'' are examples of a function of one free variable of a construction 
that juxtaposes the object which is the meaning of the function to the object which is the 
free variable. The function is written, as customary in mathematics, ''surname" (x), "rank'' 
(x), and so on. If there are several free variables they are separated from one another by 
commas, after which we are dealing with the function of several variables. This 
construction associates an object-value with a set of object-variables (their order is 
important!). An example of a function of two free variables is ''the result of a game of 
chess'' (x, y). Let us give examples of functions from mathematics. Functions of one free 
variable: sin (x), |x|; |functions of two variables: arithmetic operations which may be 
written + (x, y), ~ (x, y), and so on; the distance (A, B) between two points in space A and 
B; a function of three variables: the angle formed at point B by paths to points A and C: 
the designation < (A, B, C), abbreviated as < ABC.  

Not every object can be substituted into the given function as a free variable or variables. 
If object a is a reddish-brown dog, then obviously the construction "rank'' (a) is 
meaningless. The construction + (a, B) is also meaningless where a is a number and B is a 
point in space. The set of objects (or sets of groups of objects) that can be free variables 
of a function (or functions) is called its domain of definition. The domain of definition of 
the function ''rank'' (x) is formed by all those objects which are military servicemen. The 
objects which can be values of the given function form the set which is called the area of 
values of the function. The area of values of the function "rank'' (x) includes such objects 
as "ensign,'' "lieutenant,'' "major,'' and the like, but it cannot include ''3.14'' or ''reddish-
brown dog.'' The function "rank" (x) ascribes a definite rank to each serviceman. 

When we deal with functions, one of the relations among objects, the relation of equality, 
becomes particularly important. It is essential for establishing correspondence between 
functional constructions and the names of objects from the area of values of the function. 
When singling out an equality from the mass of other relations, we preserve its 
conventional notation x = y instead of writing it in the form of a predicate = (x, y). The 
fact that object c has the surname ''Pshebyssky'' and the rank ''lieutenant'' will look as 
follows: 

(''surname'' (c)= "Pshebyssky'') & 

(''rank" (c)=''lieutenant'') 

The equality relation can be defined formally by the following four assertions. 

1. (∀∀ a) (a = a) 

2. (∀∀ a) (∀∀ b)[(a = b) ⊃ (b = a)] 

3. (∀∀  a) (∀∀  b) (∀∀c)[(a = b) & (b = c) ⊃ (a = c)] 

4. (∀∀  a) (∀∀ b){[a = b] ⊃ [W(a) =W(b)]} 
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The last assertion is true for any statement W(x) which depends on variable x. As an 
exercise we suggest that the reader translate these assertions into natural language. 

In one of the examples given above we introduced the predicate D(x,y), which has the 
meaning ''x is a divisor of y." The concept of divisibility is wholly determined by the 
operation (function) of multiplication: therefore the predicate D(x,y) can be expressed by 
the function x. The natural (that is, whole positive) number p is a divisor of the number n 
when and only when there exists a natural number m such that n =pxm. In the language of 
predicate calculus 

(∀∀ p) (∀∀n)[(D(p1n) � (∃∃ m)[n = x(p1m)]} 

To each function from n free variables we may correlate an n + 1 = place predicate which 
expresses the relation where one (for example the last) free variable is the given function 
from the remaining variables. For example, corresponding to function x(x,y) is the 
predicate M(x, y, z), which yields a true statement if and only it z = x X y. In the general 
case, corresponding to the function F(x, y, . . .z) there is the predicate F(x, y, . . .z, u), 
which possesses the property: 

(∀∀ x) (∀∀y) ... (∀∀  z) (u) {F[x, y, . . . , z, u] � [f(x, y, ..., z) = u]} 

The predicate F in fact expresses the same concept as the function F. Any statement 
which contains functional symbols can be rewritten, using predicate symbols only and 
introducing a certain number of additional object variables. Thus neither of the 
constructions that generate new objects-the construction with the connective ''such that'' 
and the function-is essential in principle, and it is possible to get along without them. 
Unlike the construction ''such that,'' however, functional symbols are very convenient and 
they are used extensively in logic. 

 
¾¾SYNTAX AND SEMANTICS 

IN CONCLUDING our short sketch of logic we shall consider the question of the 
relation between the language of logic and natural language. In the course of our 
discussion the important concepts of the syntax and semantics of language will be 
introduced.  

Let us recall the sentence about the reddish-brown dog, which we expanded into a set of 
statements expressed by means of predicates. The meaning of this set coincides with the 
meaning of the initial sentence, but the form of notation, the structure of the text, differs 
fundamentally. In semiotics (the science that studies sign systems) the aggregate of rules 
of construction of language elements is called its syntax and the relationship between 
language elements and their meanings is called semantics. Thus, the first thing that 
strikes one's eye in comparing logical and natural language is that the language of logic 
has a different syntax-one that is simple and uniform. It is based on the style of notation 
which has taken shape in mathematics; the construction of more complex language 
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elements from simpler ones is represented by analogy with mathematical notation of 
operations and functions. The syntax of the language of logic is completely formalized, 
that is, there is a set of precisely formulated rules with which one can construct any 
language element. Moreover, no matter what correctly constructed language element 
(object or statement) we may take it will always be possible to re-create the element's 
construction. This process is called syntactical analysis of the element. It is easy to see 
that syntactical analysis is extremely simple and unambiguous in the language of logic. 

The syntax (in the semiotic sense) of natural language is its grammar-that is, the rules by 
which sentences are constructed from words (syntax in the narrow, linguistic sense of the 
word) and the rules for constructing words from letters (morphology). Unlike the 
language of logic, the syntax of natural language is far from completely formalized. It 
includes an enormous number of rules with an enormous number of exceptions. This 
difference is entirely understandable. The language of logic was created artificially, while 
natural language is a result of long development which no one controlled consciously, in 
which no preconceived plan was used. The grammar of natural language has not been 
constructed or designed; it is an investigation of an already complete system. an attempt 
to discover and formulate as clearly as possible those rules which speakers of the 
language use unconsciously. 

Syntactical analysis of the sentences of natural language often requires reference to 
semantics, for without considering the meaning of a sentence it will be ambiguous. For 
example, let us take the sentence: ''Here are the lists of students that passed the physics 
exam. In this sentence the attribute ''that passed the physics exam'' refers to students. If 
we use parentheses to make the syntactical structure of the sentence more precise, as is 
done in writing algebraic and logical expressions, they would be placed as follows: ''Here 
are the lists of (students that . . . passed).'' Now let us take the following sentence: ''Here 
are the lists of students that were lying on the dean's shelf. Formally the structure of this 
sentence is exactly the same as in the preceding one. But in fact a different placement of 
parentheses is assumed here, specifically: ''Here are the (lists of students) that . . . were 
lying.'' When we arrange parentheses in this way mentally we are relying exclusively on 
the meaning of the sentence, for we assume that students could not be lying on the dean's 
shelf. 

In general, constructions with the word ''that'' [Russian kotoryi] are very treacherous. In 
his book Slovo o slovakh [A Word about Words], L. Uspensky tells how he once saw the 
following announcement: 

CITIZENS-TURN IN SCRAP MATERIAL TO THE YARDKEEPER THAT IS LYING 
AROUND! 

It is not surprising that this construction did not find a place in mathematical logic! 
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¾¾LOGICAL ANALYSIS OF LANGUAGE 

THUS, to make a logical analysis-to construct the logical equivalent of a sentence in 
natural language, we must first of all make a syntactical analysis of the sentence; the 
results of the analysis will be reflected directly in the syntactical structure of the logical 
expression. But semantics is by no means left out either. When we say that "reddish-
brown' is a one-place predicate, ''killed'' is a two-place predicate, ''distance'' is a function, 
''and" is a logical connective, ''all'' is a quantifier, and so on, we are performing a 
semantic analysis of the concepts expressed in natural language. We classify concepts in 
accordance with a scheme fixed in the language of logic and we establish relations among 
the concepts. Logical analysis is essentially semantic analysis. Syntactical analysis is 
necessary to the extent that it is needed for semantic analysis.  

Logical analysis may be more or less deep. In our example it is very superficial. Let us 
see if we could continue it, and if so how.  

The concepts of ''dog," ''reddish-brown" and "cat'' are one place predicates, obviously 
elementary and not subject to further analysis. These are simple Aristotelian concepts 
which rely directly on sensory experience; every normal person is able to recognize them 
and the only way to explain what a ''cat'' is to point one out.  

The concept ''stray'' is also a one-place predicate, although a more complex one. If we 
were reasoning in a formal grammatical manner we could conclude that "stray'' means 
"that which strays.'' But this would be an incorrect conclusion because the verb to stray 
does not designate a length of time. A perfectly well-bred house cat may go out for an 
hour and stray across a roof, but this does not give anyone the right to call it a ''stray.'' It 
would be more correct to define a stray cat as a cat that has no master or, using a relation 
which is already included in our logical expression, as a cat that does not belong to 
anyone. Here is a formal notation of this definition: 

''stray'' (x) ≡ - (∃∃y) ["belongs'' (x,y)] 

(It is assumed here that x is an arbitrary object.) 

Let us look at the relation ''belongs.'' In a certain sense we sneaked it in because the word 
''belong'' was not in the initial sentence. But it was understood and semantic analysis 
revealed it! In the Russian sentence the relation of belonging was conveyed by the 
genitive case. Here we see a clear example of the ambiguity and inadequacy of 
syntactical analysis. We used the genitive case in the constructions ''the widow's dog [ 
''the dog of the widow''] and "the dog's mistress'' but in no way can it be said that the 
mistress belongs to her dog. The construction ''the widow's nose'' can of course be 
interpreted as the ''nose that belongs to the widow.'' But here we are already encountering 
the semantic ambiguity of the word ''belong,'' for it is obvious that the nose belongs to the 
widow in a different way than the dog belongs to her.  
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It requires a good deal of work to break the concept "belong" into its elementary 
constituent parts; this would require a description of the customs and laws related to the 
right of ownership. Only in this case can the meaning of ''belong'' be explained. The 
predicate "widow" and the functions "rank'' and ''surname'' (which we introduced during 
our analysis of the concept ''Lieutenant Pshebyssky'') are also bound up with the social 
sphere and require further analysis. Finally the concept "killed'' although it is not linked 
with the social sphere and is plainly simpler (closer to sensory experience) than the 
preceding concepts would also have to be subjected to logical analysis. In this analysis it 
would be possible to identify. first of all the element of completion in the action. which is 
expressed by the Russian verb form secondly the final result (the death of the victim) and 
thirdly the typical characteristic of the action expressed by the Russian verb zagryzt' ]-use 
of the teeth. 

Logical analysis of language is an extremely interesting line of investigation, but we 
cannot dwell on it here. Those who are interested are referred to Elements of Symbolic 
Logic (New York: Free Press. 1966) by H. Reichenbach one of the founders of this field.  

Let us summarize the results of our comparison between natural language and the 
language of logic. The language of logic has a simple and completely formalized syntax. 
By syntactical and semantic analysis a text in natural language can be translated to the 
language of logic-that is, it can be correlated with a text in the language of logic that has 
the same meaning. Semantic analysis of the natural text during translation may be more 
or less deep which is to say that the predicates and functions included in the logical text 
may be closer or further from immediate sensory and emotional experience. There are 
predicates and functions which cannot be broken down into more elementary constituents 
and which therefore cannot be defined in any way except by reference to experience. We 
shall call such predicates and functions primary. 
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CHAPTER SEVEN 
Language and Thinking 

 
 

¾¾WHAT DO WE KNOW ABOUT THINKING? 

THE FIRST THING we must do to approach the problem of language and thinking 
correctly is to clearly separate what we know about thinking from what we do not know. 
We know that thinking is a process that takes place in the nerve nets of the brain. Because 
the tern ''representation" to us means a state of some subsystem of the brain it may be 
said that thinking is the process of change in the aggregate of self-representations. But at 
any given moment in time only a certain (obviously small) part of these representations is 
accessible to, as we say, our consciousness. These representations can be consolidated 
into one (for several subsystems taken together constitute a new subsystem), which is the 
state of consciousness at the given moment. We do not know what consciousness is from 
a cybernetic point of view: we have only fragmentary information (specifically, that 
consciousness is closely related to the activity of what is called the reticular formation  of 
the brain). 

Thus, thinking has an external, manifest aspect: a stream of conscious representations. 
This stream can be fixed and studied, and from it we try to draw conclusions indirectly 
about those processes in the brain which are illuminated by consciousness. We are fairly 
sure about some things regarding the stream of consciousness. We know that it is 
regulated to a significant degree by associations of representations which form under the 
influence of experience and reflect the characteristics of our environment. Specifically, 
we receive our ability to foresee future situations to one degree or another thanks to the 
association of representations. We also know that humans, unlike animals, have the 
ability to control the process of association; this is manifested as imagination, encoding, 
and conscious memorization. But we do not know the concrete cybernetic mechanism of 
this ability or, as a matter of fact, the mechanism of the association of representations. 
These mechanisms are not given to us subjectively either: in the stream of consciousness 
we merely observe their appearance, the result of their action. Finally, we are subjectively 
given a sensation of freedom of choice in our actions: free will. Free will also manifests 
itself in thinking. We are able to turn our thoughts to any subject we wish. We do not 
know the cybernetic interpretation of free will either, and this situation is perhaps worst 
of all. 

 
¾¾LINGUISTIC ACTIVITY 

REPRESENTATIONS of linguistic objects, words and sentences, occupy a distinct place 
among all representations in the process of thinking. These representations are (with the 
exception of deaf mutes, of course) a combination of aural and motor representations and 
(for people who have dealt with written language from childhood) the visual component 
may also be joined to them. When we picture a certain word in our mind we mentally 
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pronounce it, listen, and possibly see it written. For brevity we will call these linguistic 
representations. The stream of linguistic representations is precisely what is ordinarily 
called thinking. The presence of this stream is a specifically human characteristic; it is 
not found in animals. So-called ''abstract'' thinking is actually thinking in words, the 
stream of linguistic representations. Without such thinking, the achievements of thought 
in which the human race takes such pride would have been impossible.  

The significance of linguistic representations is that they are uniquely related to words 
and sentences as the material elements of the material system ''language.'' This system is 
the aggregate of all words and sentences pronounced orally, transmitted by telephone and 
radio, written on paper, encoded on punched cards for computers, and so on--in short, the 
aggregate of what we have called the higher nervous system of the material body of 
culture. Functionally, a stream of linguistic representations in no way differs from a 
sequence of their material correlatives: words. The external, observed aspect of thinking 
may be described as activity consisting of the creation of certain material linguistic 
objects, for example pronouncing sentences out loud (unfortunately these objects are very 
short-lived) or writing them on paper. We shall call this activity linguistic. 

There are compelling reasons to consider linguistic activity the basic, primary aspect of 
thinking and the stream of linguistic representations merely a transitional element--a form 
of connection between the material linguistic objects and the aggregate of all (not just 
linguistic) representations. In fact, it is precisely the linguistic objects which store and 
transmit information and operate as the elements of linguistic models of reality. The child 
is taught linguistic activity in the same way as it is taught to walk, shoot a bow, or 
hammer nails. As a result the child becomes, so to speak, plugged into the language: he 
uses the models already available and enriches it with new ones. Furthermore, he may 
also use language in a noncommunicative manner (for his own purposes) as did the 
young man Uu of the Nyam nyam tribe when he counted the enemy with his fingers. 
During noncommunicative use of language there may be a stream of linguistic 
representations without apparent linguistic activity (''I think!''); but after all, these 
representations emerged and acquired their meanings as a result of activity involving 
substantial, material linguistic objects! And often during the process of reflection we 
whisper certain words and whole phrases, returning them to their material form. The 
primacy of substantive linguistic activity is especially clear when we are dealing with 
scientific models of reality. After long, hard study with real, written symbols a person 
may be able to multiply a few small numbers or reduce similar elements of an algebraic 
expression in his head. But give him a problem that is a little harder and he will demand a 
pencil and paper!  

Linguistics and logic investigate linguistic activity. Linguistics is interested primarily in 
the syntax of language (in the broad, semiotic sense) while logic is chiefly interested in 
semantics. When syntax and semantics are interwoven it is not possible to separate 
linguistics from logic. It is true that traditional logic declares itself to be the science of the 
laws of thinking, not the science of language, but this pretentious statement should not be 
taken too seriously. Of all the fields of knowledge which study thinking, logic has the 
most external, superficial approach. It does not investigate the real mechanisms of the 
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work of the brain, as neurophysiology does; it does not construct models of mental 
activity, as cybernetics does; and it does not attempt to record and classify subjectively 
perceived emotional states, as psychology does. It recognizes only precise, socially 
significant thoughts (not the ravings of a madman!) as its object of study. But such 
thoughts are in fact nothing else but linguistic representations with socially significant 
semantics. Logical (semantic) analysis of language leads to primary, undefinable 
concepts and stops there; it does not take us beyond language. Logic also contains its 
theory of proof. If language is used in a form of notation which keeps within the rules of 
predicate calculus, not in the form of natural language, it is possible to establish the 
formal characteristics of the correctness of deductions and formal rules which, if used, 
will always yield correct conclusions from correct premises. These rules (the laws of 
logic), which are also expressed in the form of a linguistic object, form a metasystem in 
relation to the statements obtained as a result of application of the rules. 

 

Figure 7.1.  Logic as a metasystem. 

Sentences are the object and result of work for the theory of proof. Thus, all of logic lies 
wholly in the sphere of linguistic activity. Its lower stage is semantic analysis and its 
higher stage is the theory of proof. We will talk about proof theory later; for now we are 
interested in the lower stage (it may even be called the foundation): the relationship 
between language and the working of the brain.  

We shall consider that by logical analysis we can translate any sentence in natural 
language into the language of logic. Of course, this somewhat exaggerates the advances 
made to date, but it is fairly clear that in principle there is nothing impossible about it. 
Logical analysis reveals the internal structure of language, the fundamental nodes of 
which it consists. Therefore we shall review the basic concepts of the language of logic, 
clarify exactly why they are as they are, and discover how they are related to brain 
activity. Whereas in the last chapter we were primarily concerned with the syntax of 
language, here we shall pose the question of the semantics of language. 
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¾¾THE BRAIN AS A "BLACK BOX" 

FIRST LET US try to find direct correlatives of language elements in brain activity. The 
first concept we introduced in our description of the language of logic was the statement. 
With what can it be correlated? The answer suggests itself: the association of 
representations. Indeed, like the brain, language is a system used to create models of 
reality. In the case of the brain the basic independent unit that can operate as a model is 
the association of representations, while in the case of language it is the statement. 

Now there is a temptation to correlate the representation to the object. At first glance this 
creates a complete and harmonious interpretation: the object corresponds to the 
representation; the relation among objects, which is the statement, corresponds to the 
relation among representations, which is the association. We may take the example of the 
association ''In the forest there are wolves,'' which we gave in chapter 4, and interpret it as 
follows: "forest'' and "wolves" are objects and, at the same time, representations, while 
"In the forest there are wolves'' is a statement and, at the same time, an association.  

But a careful analysis shows that this interpretation involves a serious mistaken 
assumption; we have artificially transferred linguistic structure to the sphere of 
representations. In reality this sphere has no such structure. Begin from the fact that an 
association of representations is also a representation. A representation may be correlated 
with the sentence ''In the forest there are wolves'' just as it may be correlated with the 
nouns ''forest'' and ''wolves.'' We should recall that an association between representations 
S1 and S2 is a new synthetic representation U (see figure 3.8). It is true that the 
association of representations is a model of reality, but if we understand the term ''model'' 
in the broad sense as a certain correlative of reality, any representation is a model. If, 
however, we understand model in the narrow sense as a correlative of reality which 
permits us to predict future states, then not any association can be a model, but only one 
that reflects the temporal aspect of reality. The process of associating is important, 
because it leads to the creation of a new model where none existed before. This process 
permits completely strict logical definition and can be revealed by experiment, similar to 
the way we easily define and uncover the process of the formation of a system from 
subsystems. But it is impossible to define the difference between an association of 
representations and a representation just as it is impossible to establish criteria that would 
distinguish a system from subsystems.  

So the statement elicits a representation and the object elicits a representation and our 
harmonious system crumbles. The representation proves too broad and too indefinite a 
concept to be made the basis of a study of the semantics of language. All we know about 
the representation is that it is a generalized state of the brain, but we know virtually 
nothing about the structure of the brain.  

In chapter 4 we defined language as the aggregate of objects Li each of which is the name 
of a certain object Ri, which is called its meaning. Concerning objects R we said only that 
they are some kind of real phenomena. The time has now come to work toward a more 
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precise answer as to what kind of phenomena these are: in other words, the question is 
''what are the semantics of natural language?'' 

In the simplest examples usually given to illustrate the relationship Li-Ri and which we 
cited above (the word lion--the animal lion, and so on), the object Ri is a representation of 
a definite object. In general, language emerges as the result of an association between 
linguistic and other representations, and therefore it is natural to attempt to define the 
semantics of language by means of those representations which emerge in the process of 
linguistic activity. It can be said that the meaning of a linguistic object is that 
representation which it evokes--the change in the state of the brain which occurs when a 
representation about a linguistic object appears in the consciousness. This definition is 
entirely correct, but unfortunately it is unproductive because the states of the brain as 
objective reality are not directly accessible to us, and we make our judgments about them 
on the basis of their manifestation in human actions only. 

Therefore let us take another route. We shall view the brain as a black box; we shall 
investigate the observed manifestations of its activity without any attempt to understand 
its internal organization. We are interested in the semantics of language, the connection 
(associations) between linguistic representations and all others. 

 

Figure 7.2.  The brain as a black box. 

Because the representations are inside the "black box," however, we shall rely only on the 
input data corresponding to them-- which is to say the linguistic objects and all the other 
activity that, for the sake of brevity, we shall call nonlinguistic. This is the input of the 
black box. Its output is obviously the person's observed actions 

Because the system of actions is very complex, we shall not make progress in our 
attempts to study semantics if we do not choose some simple type of action as a standard. 
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Of course there must be at least two variants of the action so that it will carry some 
information. Suppose there are exactly two. We shall call them the first and second 
standard actions. We shall formulate the elementary act in studying semantics as follows. 
Linguistic objects will be presented to a person who is perceiving a definite nonlinguistic 
reality and we shall assume that he responds to them by performing one of the two 
standard actions. 

 
¾¾AFFIRMATION AND NEGATION 

WE CONCEIVED this scheme in a purely theoretical manner as the simplest method of 
defining the semantics of language under conditions where the brain is pictured as a black 
box. It turns out that this scheme actually exists in linguistic activity, emerging 
spontaneously in the early stages of the development of language! In all known languages 
we find expressions for two standard actions--affirmation and negation. These actions are 
of great antiquity, as evidenced by the fact that among a large majority of peoples 
(possibly all) they are expressed in gestures as well as words. If we open the top of the 
black box just a crack, to the degree shown in figure 7.2, we can define the affirmation as 
an action performed when the linguistic object and reality are in the relation name-
meaning (that is, the necessary association exists between the linguistic and nonlinguistic 
representations), and we can define negation as the action performed when there is no 
such relation. But a person learning to use affirmative and negative words and gestures 
correctly knows nothing, of course, about representations, associations, and the like. At 
first he is simply taught to say "cat,'' "dog," and so forth while pointing at the 
corresponding objects, and then he is taught to perform the affirmative action when 
someone says ''this is a cat'' while pointing at one and to perform the negative action 
when someone makes the same statement while pointing at a dog. In both instances we 
learn correct linguistic activity while relying on the brain's ability to recognize and 
associate; but we have no knowledge of the brain s mechanisms; to us it is a black box. 

The last remark explains why it is hardly surprising that the scheme of standard actions 
has become an established part of linguistic practice. A person's brain is a black box both 
for himself and for other members of society. This is the origin of the need for a socially 
meaningful way of determining more precise semantics; this need appears as soon as 
language reaches a minimum level of complexity. 

The standard actions of affirmation and negation are not related to reality itself, as 
primary linguistic objects are; rather they refer to the relationship between primary 
linguistic objects and reality. They are elements of a metasystem in relation to the system 
of primary linguistic objects. The introduction of the actions of affirmation and negation 
into the practice of society was the beginning of that metasystem transition within 
linguistic activity whose subsequent stages are the appearance of the language of logic 
and the theory of deduction. Although affirmation and negation appeared very early in 
the development of human culture, they did not appear sufficiently early for a prototype 
of them to be found in animal actions. We know that such prototypes exist for primary 
linguistic objects in the form of animal signals. Among these signals there are ones which 
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could be described as affirmative and negative, but they have nothing in common with 
the semantic actions of affirmation and negation which are oriented to the signals 
themselves and lay the foundations of the metasystem. In this we see one more 
manifestation of the law of branching (expansion) of the penultimate level. The enormous 
growth in the number of primary linguistic objects (signals) which is found in human 
society began simultaneously with the beginning of the metalevel. 

 
¾¾THE PHENOMENOLOGICAL DEFINITION OF 
SEMANTICS 

NOW IT WILL not be difficult for us to interpret the basic concepts of logic from the 
point of view of the phenomenological (''black box'') approach. The statement is 
obviously the linguistic object to which the actions of affirmation and negation refer. The 
semantics of a language appear to an external observer as the function of two free 
variables (the statement and the true state of affairs); the function assumes one of two 
truth values: ''true'' (''yes,'' ''truth'') and ''untrue' (''no,", ''falsehood"). The value of this 
function is worked out by the black box, the human brain, which knows the given 
language. How this happens the external observer does not know.  

The statement is the basic unit of language. In considering language as a system we must 
discover how the statement, a system of statements of subsystems, can be constructed. 
Thus we come to the introduction of logical connectives, which were discussed in the 
preceding chapter.  

Reality is perceived by the human being through the medium of the sense organs; it 
appears to the human being as an aggregate of receptor states, a situation If a person were 
unable to control his sense organs and concentrate his attention on certain parts of the 
situation, that is, if the situation always appeared to a person as something whole and 
completely given from outside, then all logic would probably be limited to propositional 
(statement) calculus. But a person can control his sense organs and can, for example, fix 
his vision on a particular object. Therefore the situation is not simply reality, it is reality 
with an attention characteristic--that is, with an isolated area (approximately defined) 
which we are speaking about and on which we concentrate our attention. The concept of 
attention also has a psychological aspect, but we shall try to bypass it. We can determine 
from observing a person what he is looking at (or feeling, smelling, and so on), because 
the attention characteristic can be determined objectively. Reality with the attention 
characteristic can therefore be viewed as a free variable of the function in the ''black box" 
approach. People resort to gestures or verbal clarifications to define the position of the 
area of attention more precisely. In either case the result will be the same. If you say, ''I 
am looking at the thick book the girl in the pink dress is holding in her hands,'' the person 
you are talking to will look around until he locates the girl and the book. 

The temporal aspect of the input data of semantics must also be taken into account. If the 
reaction of the brain were determined only by the situation at one specific moment, 
unrelated to situations close in time, once again logic would probably be limited to 
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propositional calculus. In fact, however, the brain stores its memory of many past 
situations; the brain's reaction (and specifically, the standard action) is therefore always a 
function of the moving picture of situations. We often fail to recognize this because there 
are in the environment around us objects which show a relative invariability, and when 
we concentrate our attention on the invariant object it seems to us that we are not dealing 
with a moving picture but rather with a single frame. In actuality, the analysis of the 
concept of object which was given above shows that the time aspect plays the decisive 
part in it. Now, when we have introduced the concept of the attention characteristic we 
can define the object as a moving picture of situations with the attention characteristic 
represented by one continuous line.  

The extent to which we are inclined to ignore the dynamic aspect of perception can be 
seen from the situation we ordinarily describe as the existence of at least two distinct 
objects. It seems to us that we are perceiving each object separately and still we 
distinguish among all the objects and concentrate our attention on them simultaneously. 
But the simplest psychological self-analysis will persuade us that in fact in such a case 
our attention darts rapidly from one object to another. In the moving picture of situations, 
the line of the attention characteristic will be broken; it will, indeed, easily become 
possible to make several (according to the number of objects) continuous lines . 

 

Figure 7.3.  Broken line of attention out of which two continuous lines can be 
formed 

We have now come to defining the concept of the object in logic. We have established 
that the "nonlinguistic activity," shown in 7.2, which is fed to the input of the black box is 
often broken, divided up in space and time. It can be imagined as a moving picture on 
which the line of movement of the attention characteristic is drawn in. Moreover, it turns 
out that this line can be broken to become several continuous lines. These continuous 
lines are the objects. 

Thus the object of logic is wholly liberated from its material meaning; this is transferred 
to statements about the given object. The object is an identifier. Its only attribute is to be 
identical to itself and it signifies a continuous line of attention. This proposition has 
already been explained in sufficient detail in the preceding chapter. 

When in place of undivided reality we feed to the input of the black box a reality divided 
into objects, the statement becomes dependent on the method of division--that is, on the 
objects we are singling out; the statement is converted into the predicate. 
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¾¾THE LOGICAL CONCEPT 

WE HAVE ALMOST completed our analysis of the fundamentals of logic from the 
black-box point of view. We have still to define the general concept of ''logical concept,'' 
but that is simple: the concept is the predicate or logical connective. The grounds for this 
are that predicates and connectives are those basic functional nodes we discover in 
linguistic activity. The concept of function in the sense that we have defined it above may 
not be elevated to the rank of the basic logical concept because, as we have seen, it can be 
expressed through predicates and connectives. But in the broader sense both logical 
connectives and predicates are functions--that is, correlations by a certain method of 
values (truth values in the given case) to free variables. Thus it can be said that the logical 
concept is a function whose free variables are linguistic objects and situations and whose 
values are linguistic objects. The result of a logical analysis of language is a breakdown 
of linguistic activity into homotypic functional elements: connectives and predicates. 

Every logical concept is defined in the first place by its material carrier, the linguistic 
object (in most cases a word or phrase), and in the second place by the method of using 
this object in linguistic activity in society. The second point offers an opportunity to 
refine the first. The words ''koshka,'' ''koshka,'' ''KOSHKA,'' and koshka [Russian for 
''cat''] are different linguistic objects (the first two differ by their placement while the 
third and fourth also differ by their type face) but we consider them to be carriers of a 
single concept because they appear indistinguishable in linguistic activity. The same 
thing can be said--with certain restrictions--about the German die Katze, for it is used 
analogously (but only analogously!) to the Russian koshka. 

The concepts of a language form a hierarchical system. In certain specialized languages 
(sublanguages) used by the exact sciences this hierarchy is determined in a completely 
clear and strict manner. The concepts located higher in the hierarchy acquire their 
meaning by logical definitions through concepts of a lower order--that is, it is pointed out 
how, being able to determine the truth values of the predicates at a lower level, one can 
determine the value of the predicate of a higher level. In natural languages there is no 
strict hierarchy, but there is an approximate one. We can therefore assess the ''degree of 
remoteness'' of a concept from the direct data of experience by logical analysis and 
breaking complex concepts down into simpler components; the degree of remoteness of a 
concept from direct experience can be equated with its elevation in the hierarchy. This 
estimate of position in the hierarchy is approximate, because the breakdown in the 
components is not unambiguous, the actual method of subdividing has not been fully 
formalized, and no one has yet done such work for all language. Perhaps the most firmly 
established fact is that the predicates which cannot be subdivided at all are primary 
(belonging to the lowest level of the hierarchy).  

Between the concepts of a language there are numerous interconnections given by the set 
of all true statements in which the concepts under consideration are included. Language is 
a system and its concepts have meaning only as elements of the system. The meaning of a 
word is determined by the way this word is used in linguistic activity. Each word, so to 
speak, bears the imprint of all the sentences in which it has ever been included; it is an 
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element of the system. When traditional logic speaks of concepts, the two functions of the 
concept are pointed out: to serve as an element of reasoning--that is, a method of shaping 
thought--and at the same time to concentrate already existing thoughts and knowledge of 
an object in oneself. This duality is a result of the system nature of the concept. The 
linguistic object (word) which expresses a concept is used as an element for constructing 
a model of reality and is associated functionally--that is, in linguistic activity (and 
therefore also in our imagination)--with all models in which it participates. Therefore, 
although a trained dog does distinguish between a square and a circle, it cannot be said 
that it has mastered the concept of ''square''; this word includes many things about which 
the dog does not have the slightest idea. Therefore also the most exact translation from 
one language to another is by no means always a literal translation; the difference 
between the systems must be taken into account. Strictly speaking, an absolutely exact 
translation is generally impossible (with the possible exception of statements which 
contain only primary concepts accessible to a dog). 

 
¾¾THE STRUCTURAL APPROACH 

WE HAVE DEFINED the logical concept as an element of the functioning of the 
linguistic system. We shall now attempt to give a more general definition of the 
cybernetic concept of ''concept,'' relying on the structural rather than the functional 
approach.  

Let us again consider the concept ''inside'' in application to the picture discriminator. How 
would we begin to build a system that contains the concept inside''? It is apparent that at 
first we would have to construct classifiers for the concepts of ''spot'' and ''contour." Let 
us recall that the classifier is a cybernetic system that recognizes the affiliation of an 
input state (''situation'') with a definite set (Aristotelian concept), and converts it to an 
output state that reflects the most important characteristics of the situation. The spot 
classifier, for example, recognizes the existence of a spot and fixes the coordinates of the 
points which bound it.  

 

Figure 7.4. 
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In figure 7.4 we have designated the classifiers of spots and contours by the letters [pi]1, 
[pi]2,. . .. and K1, K2, . . . These classifiers form the first level of a hierarchy, for their 
input is the states of the receptors. They translate the situation from the language of 
illuminated points to the language of spots and contours. 

Having constructed the first level, we begin work on the second. We construct classifier 
B (as in figure 7.4) to whose input is fed the output of one spot classifier, [πi]i, we shall 
assume, and one contour classifier, Kj. Classifier B must have just two output states: one 
(''yes ') occurs when the spot fixed by classifier [πi]i lies inside the contour fixed by 
classifier Kj, while the second (''no'') occurs in the opposite case. We would like classifier 
B to be applicable to any pair ([πi]i, Kj). But it would be insanity to make as many copies 
of B as there are pairs ([πi]i, Kj)! Therefore we need some kind of switching device by 
means of which information from different points of the system could be fed to the one 
and only device B. Because it is meaningless to feed information directly from the 
receptors or from any other inappropriate points to a classifier, the switch should be 
designed so that it is able to feed information from any of the pairs ([πi, Kj) and nothing 
else. 

Classifier B is located on the second level of the overall system. It may possibly be used 
as an input for the third level. For example, let us suppose that the system is required to 
recognize the concept "enter into . . ." This is a dynamic concept related to time. As the 
input here we must consider not one situation but rather a series--that which above was 
called a moving picture of situations. With such a moving picture we say that the spot has 
''entered into'' a contour if at first it was outside the contour and then assumed a position 
inside it. It is apparent that the discriminator of the concept ''enter into'' (in figure 7.4 it is 
designated BB) will require at its input the output from discriminator B or from several 
discriminators B' related to different frames of the moving picture (in the first case it 
should have a device for storing the sequence of ''yes'' or ''no'' answers).  

A hierarchy of classifiers has been obtained. For us this is not new; in chapter 2 we 
considered hierarchies of classifiers. But in that chapter we limited ourselves to 
Aristotelian concepts, and the hierarchy of classifiers acted solely as a means of 
recognizing concepts and was not included in the definition of the concept of the 
''concept.'' We defined the concept of the ''concept'' (Aristotelian) independently of the 
organization of the hierarchy of classifiers as a certain set of situations--in other words a 
function that assumes a truth value of ''true'' in the given set of situations.  

But now, searching for a cybernetic interpretation of such concepts as ''inside,'' we see 
that we cannot define the more general concept of ''concept'' by relying on the level of 
receptors alone; instead it can only be defined as an element of a system of concepts. 
Corresponding to the concept of ''inside'' in figure 7.4 is the classifier B, not only as a 
device which converts the given input into the given output but also as a subsystem of the 
total recognition system-- that is, as an element connected in a certain way with other 
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elements of the system (in the particular case, receiving input information from one type 
[πi] classifier and one type K classifier).  

We have constructed a cybernetic model of the concept ''inside'' But how is this model 
related to reality? What relationship does it have to the true concept of "inside,'' which 
manifests itself in language and appears to us as one of the elements of our thinking? Can 
it be asserted that the brain has a classifier that corresponds exactly to the concept of 
''inside''? 

Although the general appearance of the diagram in figure 7.4 with its receptors and 
classifiers reflects neurophysiological findings, the concrete functions of the classifiers 
and their interrelationships reflect logical data. Therefore our diagram is not a model of 
the organization of the brain, but rather a model of the functioning of the linguistic 
system--or more precisely a structural diagram of a device that could perform the 
functions discovered in linguistic activity. In this device the classifiers perform the 
functions described by logical concepts and the switching devices (which are not shown 
in the diagram but mentioned in the text) fix the domain of definition of the concepts . 

The diagram shown in figure 7.4 may be embodied in a real cybernetic device whose 
sources of information will be the illuminated points of a screen. But even if such a 
device works very well it will not, strictly speaking, yet give us the right to consider it a 
model of the organization of the brain. Possibly the division of the nerve nets into 
classifiers as suggested by figure 7.4 or analogous diagrams taken from the functioning of 
language does not reflect the true organization of the brain at all! 

 
¾¾TWO SYSTEMS 

WE HAVE BEFORE US two cybernetic systems. The first system is the human brain. Its 
functioning is individual human thinking. Its task is to coordinate the actions of separate 
parts of the organism in order to preserve its existence. This task is accomplished, 
specifically, by creating models of reality whose material body is the nerve nets and 
which we therefore call neuronal models. We know that the brain is organized on the 
hierarchical principle. We call the structural elements of this hierarchy classifiers. The 
functions of the classifiers, considering their systems aspect--which is to say their 
interrelationships--are the individual concepts (in the cybernetic sense of the word, which 
simply means according to the cybernetic definition of the concept of ''concept''), which 
may be identified in the functioning of the brain as a whole. We will call them neuronal 
concepts. The second system is language. Its functioning is linguistic activity in society. 
Its task is to coordinate the actions of individual members of society in order to preserve 
its existence. This task is accomplished, specifically, by creating models of reality whose 
material body is linguistic objects and which we therefore call linguistic models. Like the 
brain, language is organized hierarchically. The functional elements of this hierarchical 
system are the logical (linguistic) concepts.  
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These systems are by no means independent. The linguistic system is set in motion by the 
human brain. Without the brain, language is dead. On the other hand, the brain is strongly 
influenced by language.  

Now the problem may be formulated as follows: what is the relationship between 
neuronal and logical concepts? Let us survey the sources of information about these 
systems of concepts. Logical concepts are on full display before us: phenomenologically 
speaking, we know virtually everything that can be known about them. We know very 
little about neuronal concepts. Neurophysiological research offers some information 
about the lowest levels of the hierarchy only; about the higher levels we have absolutely 
no information which is independent of language. But we do know that language is an 
offspring and, in a certain sense, a continuation of the brain. Therefore a close 
relationship must exist between the highest stages of neuronal concepts and the lowest 
stages of logical concepts. After all, logical concepts came from somewhere! The logical 
concept of an object unquestionably has a very definite neuronal correlative; that is, long 
before the appearance of language and independent of it the world presented itself to 
people (and animals) as an aggregate of objects. From the ease with which people and 
animals recognize some relations among objects (in particular transformations in time) 
we may conclude that there is also a special neuron apparatus for relations among a small 
number of objects. It can scarcely be accidental that the languages of all people have 
words that signify the objects surrounding human beings and words for the simplest 
relations among them--such as the relation of ''inside,'' which we used as an example 
above. Thus figure 7.4 can be considered a model of brain organization with a certain 
probability after all! 

When speaking of neuronal models and concepts we have in mind not only the inborn 
foundation of these concepts but also those concrete concepts which form on this 
foundation through the action of the stream of sensations. In higher animals and human 
beings the formation of new concepts as a result of association of representations plays an 
enormous part, as we know. It begins from the moment the individual appears on earth 
and develops especially intensively at a young age, when the conceptual ''flesh'' fills out 
the congenital conceptual ''skeleton.'' This introduces a new element into the problem of 
the mutual relations of neuronal and logical concepts. Those initial neuronal concepts 
which form in a baby before it begins to understand speech and talk can be considered 
independent of language, and then logical concepts can be considered reflections of them. 
But the more complex concepts form in a baby under the direct and very powerful 
influence of language. The associations of representations which make up the basis of 
these concepts are dictated by society's linguistic activity; to a significant degree they are 
thrust upon the child by adults during the process of teaching the language. Therefore, 
when we analyze the interrelations of linguistic activity and thinking and attempt to 
evaluate the degree to which the language is a continuation of the brain we cannot view 
neuronal nets as a given against which the logical concepts of the particular language 
should be compared. Considering the inverse influence of linguistic activity on thinking, 
the question can only be put as follows: what would the neuronal and logical concepts be 
like if the development of language were to follow this or that particular path? 
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¾¾CONCEPT "PILINGS" 

THE INFORMATION capacity of the brain is incomparably greater than that of language 
(in the process of speech). Language does not reflect the full wealth of sensations and 
cognitive representations. We know, for example, that the ancient Greek language had 
just one word for both dark blue and green; as a result they had just one concept in place 
of our two. Does this mean that they perceived color differently? Of course not. The 
human eye distinguishes hundreds of nuances of color but only a few words exist to 
denote them.  

The primary logical concepts may be compared with buttresses or, better, with pilings 
driven into the ground of the neuronal concepts. They penetrate to a certain depth and 
occupy just a small part of the area. Floor by floor the entire building, the hierarchy of 
concepts of the language, is erected on these piles. We take pride in the building because 
it contains concepts which were not even conceived of at ground level, among the 
neuronal concepts. But have the pilings been driven well? Could they have been driven at 
other points and is it too late now to drive additional ones? How does this affect the 
building? In other words, is the selection of primary predicates fundamental for the 
development of language, culture, and thinking? We rarely ask ourselves this question 
because we do not see the ground itself; it is covered by the edifice of language. But if we 
go down under the floor we can touch the original soil and feel around in the darkness 
with our hands. By doing this we may learn once again how much of the ground is not 
touched by the pilings (especially in the sphere of spiritual experience) and we shall 
recall the words of the poet Tyutchev: ''The thought expressed is a lie.''  

From this metaphor one more question arises: how good is the architecture of the 
building? Is it the only possible architecture, and if not, how much does its selection 
influence the functioning of the edifice, the possibility of expansion, remodeling, and so 
on? In other words, is the grammar of language (at least in its most important, 
fundamental features) something external and unimportant for thinking, or does it 
fundamentally affect thinking and direct its development?  

We have formulated both of these questions, concerning the effect of selection of primary 
predicates and of grammar, in a form requiring a yes or no answer only for purposes of 
clear presentation. The point is not, of course, to answer them simply by yes or no. The 
answer will always, in the last analysis, contain a conditional element, and the fact that 
there is some influence is undoubted. Our job is to investigate real findings regarding 
language's influence on thinking. 

 
¾¾THE SAPIR-WHORF CONCEPTION 

THE WORK of two American linguists, E. Sapir and B. Whorf, is very interesting from 
this point of view. The following quote, which Whorf used as the epigraph to his article 
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''The Relation of Habitual Thought and Behavior to Language,'' gives an idea of Sapir's 
views: 

Human beings do not live in the objective world alone, nor alone in the world of 
social activity as ordinarily understood, but are very much at the mercy of the 
particular language which has become the medium of expression for their society. It is 
quite an illusion to imagine that one adjusts to reality essentially without the use of 
language and that language is merely an incidental means of solving specific problems 
of communication or reflection. The fact of the matter is that the ''real world'' is to a 
large extent unconsciously built up on the language habits of the group.... We see and 
hear and otherwise experience very largely as we do because the language habits of 
our community predispose certain choices of interpretation.[1]  

B. Whorf takes this conception as his basis and gives it concrete form in his studies of 
certain Indian languages and cultures and his comparisons of them with European 
languages and culture. We will present some of Whorf's observations and thoughts on 
such logical categories as space and time, form and content.[2] 

Whorf notes that to correctly evaluate such categories one must first reject those views 
regarding the interaction of language and thought which are ordinarily considered an 
integral part of ''common sense'' and are called, by Whorf, ''natural logic.'' He writes: 

Natural logic says that talking is merely an incidental process concerned strictly with 
communication, not with formulation of ideas. Talking, or the use of language, is 
supposed only to express what is essentially already formulated non-linguistically. 
Formulation is an independent process, called thought or thinking, and is supposed to 
be largely indifferent to the nature of particular languages. Languages have grammars, 
which are assumed to be merely norms of conventional and social correctness, but the 
use of languages is supposed to be guided not so much by them as by correct, rational, 
or intelligent thinking.  

Thought, in this view, does not depend on grammar but on laws of logic or reason 
which are supposed to be the same for all observers of the universe--to represent a 
rationale in the universe that can be ''found" independently by all intelligent observers, 
whether they speak Chinese or Choctaw. In our own culture, the  formulations of 
mathematics and of formal logic have acquired the reputation of dealing with this 
order of things, i.e., with the realm and laws of pure thought. Natural logic holds that 
different languages are essentially parallel methods for expressing this one-and-the-
same rationale of thought and, hence, differ really in but minor ways which may seem 
important only because they are seen at close range. It holds that mathematics, 
symbolic logic, philosophy, and so on, are systems contrasted with language which 
deal directly with this realm of thought, not that they are themselves specialized 
extensions of language.[3]  

This conception has taken such deep root that we are not even aware that it can be 
subjected to critical analysis. Similarly, we are only aware that we breathe air when we 
begin to experience a scarcity of it. Whorf gives one more illustration. Suppose that 
owing to a certain defect in vision a certain people can perceive only the color blue. For 
them the very term ''blue'' will be deprived of the meaning which we give it by 
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contrasting it with red, yellow, and the other colors. In the same way, a large majority of 
people who talk, or at least think, in only one language are simply unaware of the 
limitations it imposes and the arbitrary element it contains. With nothing with which they 
can compare their language, its limitations and arbitrary character naturally seem to them 
universal and unconditional. When linguists conducted critical investigations of large 
numbers of languages, the structures of which differed greatly, they encountered 
violations of rules they formerly had considered as universal. It turned out that grammar 
is not simply an instrument for reproducing thought, but a program and guide for the 
thinking activity of the individual. Whorf writes: 

'We dissect nature along lines laid down by our native languages. The categories and 
types that we isolate from the world of phenomena we do not find there because they 
stare every observer in the face; on the contrary, the world is presented in a 
kaleidoscopic flux of impressions which has to be organized by our minds--and this 
means largely by the linguistic systems in our minds.'' [4] 

It should be noted here that Whorf is plainly carried away when he speaks of organizing 
the stream of impressions, and he incorrectly describes the division of labor between the 
neuron system and the linguistic system, ascribing the organization of impressions 
''largely'' to the linguistic system. In reality, of course, a very large part of the work of 
initial organization of impressions is done at the neuron level and what language receives 
is no longer the raw material, but rather a semifinished product processed in a completely 
definite manner. Here Whorf makes the same mistake in relation to the neuron system as 
''natural logic'' makes (and Whorf correctly points out!) in relation to the linguistic 
system. He underestimates the neuron system because it is the same in all people.  

It is difficult to conclude that the linguistic system is important for the organization of 
impressions if we restrict ourselves to a comparison of modern European languages, and 
possibly also Latin and Ancient Greek. In their fundamental features the systems of these 
languages coincide, which was an argument in favor of the conception of natural logic. 
But this coincidence is entirely explained by the fact that the European languages (with 
minor exceptions) belong to the single family of Indo-European languages, are 
constructed generally according to the same plan, and have common historical roots, 
moreover, for a long period of time they participated in creation of a common culture and 
in large part this culture, especially in the intellectual area, developed under the 
determining influence of two Indo-European languages: Greek and Latin. To estimate the 
breadth of the range of possible grammars one must refer to more linguistic material. The 
languages of the American Indians, the Hopi, Shawnee, Nutka, and others, serve as such 
material for Whorf. In comparison with them the European languages are so similar to 
one another that, for convenience in making comparisons, Whorf consolidates them into 
one "Standard Average European'' language. 
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¾¾SUBSTANCE 

STANDARD AVERAGE EUROPEAN has two types of nouns which denote material 
parts of the world around us. Nouns in the first group--such as ''a tree,'' ''a stick,'' ''a man,'' 
and the like--refer to definite objects which have a definite form. Nouns of the second 
group--such as ''water,'' ''milk,'' and "meat''--denote homogeneous masses that do not have 
definite boundaries. There is a very clear grammatical distinction between these groups: 
the nouns which denote substances do not have a plural case. In English the article before 
them is dropped, while in French the partitive article is placed in front of them. If we 
think deeply about the meaning of the difference between these two types of objects, 
however, it becomes clear that they do not differ from one another so clearly in reality as 
in language, and possibly there is no actual difference whatsoever. Water, milk, and meat 
are found in nature only in the form of large or small bodies of definite shape. The 
difference between the two groups of nouns is thrust upon us by language and often 
proves so inconvenient that we must use constructions such as ''piece of meat'' or ''glass 
of water,'' although the word ''piece'' does not indicate any definite shape and the word 
''glass,'' although it assumes a certain shape, introduces nothing but confusion because 
when we say ''glass of water'' we have in mind only a quantity of water, not its shape in 
the container. Our language would not lose any expressive force if the word "meat" 
meant a piece of meat and the word ''water'' meant a certain amount of water. 

This is exactly the case in the Hopi language. In their language all nouns denote objects 
and have singular and plural forms. The nouns we translate as nouns of the second group 
(substances) do not refer to bodies which have no shape and size, but rather to one where 
these characteristics are not indicated, where they are ignored in the process of 
abstraction just as the concept of ''stone'' does not indicate shape and the concept of 
''sphere'' does not indicate size. 

Therefore the concept of substance as something which has material existence and at the 
same time cannot in principle have any shape could obviously not occur among the Hopi 
or be understood by a person speaking only the Hopi language. In European culture the 
concept of substance emerges as a generalization of the concepts which express nouns of 
the second group while the generalization of concepts which express nouns of the first 
group leads to the concept of the object. For the Hopi, in whose language there is no 
division of nouns into two groups, only one generalization is possible and it leads, of 
course, to the concept of object (or body), for it is possible to abstract from the shape of 
an observed material object but it cannot be said that it does not exist. The intellectual 
division of everything existing into a certain nonmaterial form (shape) and a material, but 
non-form content (substance), which is so typical of traditional European philosophy, 
will probably seem to the Hopi to be an unnecessary invention. And he will be right! 
(This is not Whorf's remark, but mine.) The concept of substance, which played such an 
important part in the arguments among the Medieval Scholastics, has completely 
disappeared in modern science. 
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¾¾THE OBJECTIVIZATION OF TIME 

WE WILL NOW take up one more interesting difference between the Hopi language and 
the Average European Standard. In the European languages the plural forms and cardinal 
numbers are used in two cases: (1) when they signify an aggregate of objects which form 
a real group in space and (2) to classify events in time, when the cardinal number does 
not correspond to any real aggregate. We say ten men" and ''ten days.'' We can picture ten 
men as a real group, for example ten men on a street corner. But we cannot picture ten 
days as the aggregate of a group. If it is a group, then it is imagined and consists not of 
''days,'' for a day is not an object, but of some objects which are arbitrarily linked to days, 
for example pages of a calendar or segments in a drawing. In this way we convey a time 
sequence and a spatial aggregate with the same linguistic apparatus, and it seems to us 
that this similarity is in the nature of things. In reality this is not true at all. The relations 
to be "later'' and ''to be located near" do not have anything in common subjectively. The 
resemblance between a time sequence and a spatial aggregate is not given to us in 
perception, but rather in language. This is confirmed by the existence of languages in 
which there is no such resemblance.  

In the Hopi language the plural forms and cardinal numbers are used only to designate 
objects which may form real groups. The expression ''ten days'' is not used. Instead of 
saying '"They stayed ten days," the Hopi will say ''They left after the tenth day." One 
cannot say ''Ten days is more than nine days,'' one must say "The tenth day is after the 
ninth.''  

Whorf calls the European representation of time objectivized because it mentally 
converts the subjective perception of time as something ''which becomes later and later'' 
into some kind of objectively (or, it would be better to say, objectively) given objects 
located in external space. This representation is dictated by our linguistic system, which 
uses the same numbers both to express temporal relations and to measure spatial 
quantities and designate spatial relations. This is objectivization. Such terms as 
''summer.'' "September,'' morning," and "sunset'' are nouns in our languages just as the 
words which designate real objects are. We say "at sunset'' just as we say "at a corner,'' 
"in September", just as we say ''in London.'' 

In the Hopi language all time terms such as summer, morning, and the like are not nouns, 
they are special adverbial forms (to us, the terminology of the Average European 
Standard). They are a special part of speech which is distinguished from nouns, verbs, an 
even from other adverbs. They are not used as subjects, objects, for any other noun 
function. Of course they have to be translated ''in the summer,'' ''in the morning,'' and so 
on, but they are not derivatives of any nouns. There is no objectivization of time 
whatsoever. 

In European culture the very concept of ''time'' is a result of the objectivization of the 
relation of ''earlier-later'' combined with our notion of substance. In our imagination we 
create nonexistent objects such as year,'' ''day,'' and ''second,'' and we call the substance of 



  

 137

which they consist "time.'' We say ''a little time'' and ''a lot of time" and we ask someone 
to give us an hour of time as if we were asking for a quart of milk. The Hopi have no 
basis for a term with this meaning. 

The tripartite (past, present, future) verbal system of the Average European Standard 
directly reflects the objectivization of time. Time is represented as an infinite straight line 
along which a point is moving (usually from left to right). This point is the present, while 
to its left is the past and to the right is the future. In the Hopi language, as one might 
assume, things are different. Their verbs do not have tenses as the European verbs do. 
Verb forms reflect the source of information and its nature. And this corresponds more 
closely to reality than the three-tense system. After all, when we say "we shall go to the 
movies tomorrow,'' this does not reflect what will actually occur but only our intention to 
go to the movies, an intention that exists now and may change at any minute. The same 
thing applies to past time. 

 
¾¾LINGUISTIC RELATIVITY 

ALL THAT HAS BEEN said in no way leads to the conclusion that the objectivization of 
time is a bad thing, that we ought to renounce it and change to a Hopi-type language. On 
the contrary, the most important traits of European culture which have secured such an 
outstanding place for it--its historical sense (interest in the past, dating, chronicles) and 
the development of the exact sciences--are linked to the objectivization of time. Science 
in the only form we yet know it could not have existed without the objectivization of 
time. The correlation of temporal to spatial relations and the following step, the 
measurement of time, amounted to the construction of a definite model of sensory 
experience. It may be that this was the first model created at the level of language. Like 
any model, it contains an element of arbitrary and willful treatment of reality, but this 
does not mean that it must be discarded. It must, however, be improved. To improve it, 
we must conceive of it as a model, not as the primary given. In this respect linguistic 
analysis is extremely useful because it teaches us to distinguish the relative from the 
absolute; it teaches us to see the relative and conditional in what at first glance seems 
absolute and unconditional. Thus, Whorf calls his conception the conception of linguistic 
relativity.  

There is a curious similarity here with the physical theory of relativity. Objectivized time 
is the foundation of classical Newtonian mechanics. Because the imagined space into 
which we project time is in no way linked to real space, we picture time as something that 
"flows'' evenly at all points in real space. Einstein dared to reconsider this notion and 
showed that it is not upheld in experimental data and that it should be rejected. But as we 
know very well, this rejection does not come without difficulty, because, as Whorf 
writes: "The offhand answer, laying the blame upon intuition for our slowness in 
discovering mysteries of the cosmos, such as relativity, is the wrong one. The right 
answer is: Newtonian space, time, and matter are no intuitions. They are recepts from 
culture and language. That is where Newton got them.''[5] Once again here we should 
temper the statements of the enthusiastic linguist. Newtonian concepts, of course, rely 
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directly on our intuition. But this intuition itself is not a pure reflection of primary 
sensory experience, of the ''kaleidoscopic flux of impressions''; rather it is a product of 
the organization of this experience, and language and culture really do play a 
considerable part in this organization. 

 
¾¾THE METASYSTEM TRANSITION IN LANGUAGE 

LANGUAGE EMERGES when the phenomena of reality are encoded in linguistic 
objects. But after its origin language itself becomes a phenomenon of reality. Linguistic 
objects become very important elements of social activity and are included in human life 
like tools and household accessories. And just as the human being creates new tools for 
the manufacture and refinement of other tools so he creates new linguistic objects to 
describe the reality which already contains linguistic objects. A metasystem transition 
within the system of language occurs. Because the new linguistic objects are in their turn 
elements of reality and may become objects of encoding, the metasytem transition may 
be repeated an unlimited number of times. Like other cybernetic systems we have 
considered in this book, language, is a part of the developing universe and is developing 
itself. And like other systems, language--and together with it thinking--is undergoing 
qualitative changes through metasystem transitions of varying scale, that is to say, 
transitions which encompass more or less important subsystems of the language system. 

With all the physical-chemical differences that exist between the linguistic system and 
the neuronal system it is easy to see that, functionally, metasystem transitions in language 
are a natural continuation of the metasystem transitions in the neuronal structures, serving 
to create more highly refined models of reality. To clarify this thought let us look again at 
the diagram in figure 7.4, this time viewing it as a diagram of a device for processing 
information coming from an illuminated screen and, consequently, as a partial (and 
crude) model of the organization of the brain. In the diagram we see classifiers which 
correspond to the concepts of ''spot,'' ''contour,'' "inside,'' and "enter into.'' These concepts 
stand at different levels of the hierarchy and the number of levels is in principle 
unlimited. But let us ask: how is it possible that there could be a metasystem transition of 
such large scale that it would be represented not by adding a new level to figure 7.4 but 
as a departure from the plane of the drawing in general, as the creation of a new plane'?  

If we compare our artificial system to real biological systems it corresponds to a nerve 
net with a rigidly fixed hierarchy of concepts.  This is the stage of the complex reflex. To 
reach a new plane would signify the transition to the stage of associating, when the 
system of connections among classifiers becomes controlled. 

The concepts involved in figure 7.4 are taken from language. In addition, there are in 
language concepts that ''go outside the plane'' of the diagram. Regarding the concept 
''inside'' we can say that it is an example of a spatial relation among objects. Other 
examples of spatial relations are the concepts ''touches,'' ''intersects,'' and ''between" 
Classifiers to recognize these concepts could be added to the diagram But how about the 
very concept ''spatial relation"? It is the sought-for metaconcept in relation to the 
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concepts ''inside,'' ''between, and so on; its relation to them is that of name to meaning. If 
we were able to think of a way to embody the concept of "spatial relation in the form of 
some kind of device that supplements the device in figure 7.4, it would plainly have to 
form a metasystem in relation to such classifiers as "inside,'' ''between,'' and others. The 
task it would be able to perform would be modifying the structure of work of these 
classifiers or creating new ones that recognize some new spatial relation. But is not the 
very purpose of the appearance of the concept of ''spatial relation'' in language itself to 
achieve a better understanding of how the linguistic system works--to modify it and 
create new concepts? Most certainly it is. The metasystem transition in the development 
of language performs the same role as it does in the development of neuronal structures. 

 
¾¾THE CONCEPT-CONSTRUCT 

CONCEPTS SUCH AS that of "spatial relation'' rely on reality indirectly, through the 
mediation of intermediate linguistic structures. They become possible as a result of a 
certain linguistic construction, and therefore we shall call them constructs. Statements 
containing constructs demand a certain linguistic activity to establish their truth or 
falsehood. Concept-constructs do not exist outside the linguistic system. For example, the 
concept of ''spatial relation'' cannot arise where there are no words "inside,'' "between,'' 
and so on, although the corresponding neuronal concepts may have existed for a long 
time.  

We can now make a survey of the levels of language viewed as a control hierarchy. We 
shall take the signals of animals for the zero level of language. The appearance of the 
standard actions of affirmation and negation, logical connectives, and predicates is, as we 
have already said, a metasystem transition. They create the first level of language. The 
next metasystem transition forms the second level of language, whose concepts are 
constructs. Among the concepts are grammar and logic. At the first level, grammar and 
logic are the highest control systems that create language but are not themselves subject 
to control; however, at the second level they become objects of study and control 
(artificial construction). The second level of language may be called the level of 
constructs, and also the level of self-description. 

The level of development of language determines the relation between the linguistic and 
the neuronal systems. At the zero level, language transmits only elementary control 
information: at the first level it acquires the ability to fix and transmit certain models of 
reality, but only those models which already exist at the neuronal level. First-level 
language may be represented as a copy or photograph of neuronal models (taking into 
account the inverse of language as corrective). Finally, at the level of constructs language 
becomes able to fix models of reality which could not (bearing in mind the given 
biological species of the human being) occur at the neuronal level. Such models are 
called theories. 

We have cited numbers and operations with them as the simplest and most graphic 
example of models that do not exist at the neuronal level and are created at the language 
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level. Arithmetic was one of the first theories created by the human race. It is easy to see 
that numbers, or more precisely large numbers, are constructs. Neuronal concepts 
correspond to the numbers two and three; we distinguish two objects from three and from 
one at the first glance. But the number 137 is a construct; it has meaning only to the 
extent that the number 136 has meaning, which in its turn relies on the number 135 and 
so on. Here there is a metasystem transition, the emergence of the process of counting 
which generates concrete numbers. Within the framework of the metasystem of counting, 
a hierarchy by complexity arises: the natural series of numbers. The appearance of the 
concept of ''number'' marks a new metasystem transition which assumes that counting has 
become an established part of everyday life. An abstract concept of ''number'' is not 
required for counting: it only becomes necessary when people begin to think about 
counting. The concept of the number is a construct of a higher level than concrete 
numbers. The concepts of arithmetic operations are located at the same level. 

On the second level of language we have consolidated all the concepts which do not rely 
directly on neuronal concepts but rather require auxiliary linguistic constructions. With 
such a definition the second level is the last one formally, but it contains a control 
hierarchy that forms through metasystem transitions and may in principle be as high as 
one likes. We have seen this in the example of concrete numbers and the concept of 
''number.'' Metasystem transitions can differ in scale and occur in relation to different 
subsystems of language. Therefore, second-level language has a complex structure which 
can be figuratively pictured not in the form of even layers lying one upon the other but in 
the form of a building or complex of buildings with vertical and horizontal structure. 
Different control hierarchies and hierarchies of complexity generated by the subsystems 
become interwoven and form a multifaceted architectural complex. Second-level 
language is the language of philosophy and science. First-level language is ordinarily 
called ''everyday'' or "conversational'' language. 

 
¾¾THE THINKING OF HUMANS AND ANIMALS 

IT IS SOMETIMES SAID that the human being can think in abstract concepts, whereas 
abstract concepts are inaccessible to the animal, who can attain only a few concrete 
concepts. If the term ''abstract'' is understood (as is the case here) to mean devoid of 
nonessential characteristics, this assertion will not withstand even the slightest criticism. 
We have seen that the crucial distinguishing feature in human thinking is the presence of 
control of associations, which manifests itself above all as a capability for imagination. 
As for a difference in the concepts, in any case it cannot be reduced to an opposition 
between abstract and concrete. Every concept is abstract. The concept of cat is abstract 
for the dog because, for example, it contains an abstraction from the coloring of the cat (a 
nonessential characteristic). If we measure mental capabilities by the degree of 
abstraction of concepts the frog will prove to be one of the most intelligent animals, for it 
thinks with just two concepts, albeit extremely abstract ones: "something small and 
rapidly moving" and ''something large, dark, and not moving very rapidly.'' As you see, 
our language does not even have special terms for these concepts. 
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The truly profound difference between the conceptual apparatus of higher animals and 
that of human beings is that animals cannot attain concept-constructs; these concepts 
assume a capability for linguistic activity. It is not abstract concepts which distinguish 
human thinking; it is concept-constructs. In partial justification of the statement above, 
we should note that the expression "abstract concept" is commonly used to refer to 
precisely what we call the concept construct, and people talk about the degree of 
abstraction where they should actually speak of the ''construct quality" [''konstruktnost''--
the degree to which constructs are used--trans.]. It is true that the concept of number is 
formed by abstraction starting from concrete numbers and that the concept of the spatial 
relation begins from concrete relations; but the distinctive feature here is not actual 
process of abstraction (which, as we have seen, appeared in the very early stages of the 
cybernetic period of life), rather it is the fact that in the process of abstraction linguistic 
objects play the most essential part. The principal thing here is construction not 
abstraction. Abstraction without construction simply leads to loss of meaning, to concepts 
such as ''something'' and "some."  

 

[1] Quoted from Novoe v lingvistike (New Developments in Linguistics). No 1. Moscow, 
1960. [Original Whorf article in Language, Culture, and Personality, Menasha. 
Wisconsin, 19 41, pp 75-93. 

[2] I have taken the quotes by Whorf from the above-mentioned Soviet publication.  

[3] [Original article, ''Science and Linguistics,'' in The Technology Review 42 no 6 (April 
1940), Massachusetts Institute of Technology.] 

[4] "Science and Linguistics." 

[5] [Original article, ''The Relation of Habitual Thought and Behavior to Language," 
published in Language, Culture and Personality (Menasha, Wisconsin: Sapir Memorial 
Publication Fund 1941), pp. 75-93.]  
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CHAPTER EIGHT 

  

Primitive Thinking 
 
¾¾THE SYSTEM ASPECT OF CULTURE 

LET US CONTINUE our excursion through the stages of evolution. The subject of our 
analysis now will be the history of the development of language and thinking, the most 
important component of ''spiritual" culture. As we have already noted, the division of 
culture into "material" and ''spiritual'' is quite arbitrary and the terms themselves do not 
reflect the substance of the division very accurately, so that when we want to emphasize 
this we place them within quotation marks. The use of a tool and, even more so, the 
creation of new ones demand the work of imagination and are accompanied by emotions, 
giving us grounds to consider these phenomena part of ''spiritual'' culture. At the same 
time, the process of thinking manifests itself as definite linguistic activity directed to 
completely material objects-- linguistic objects. Language and thinking are very closely 
interconnected with material culture. The historian who sets himself the task of 
investigating the mechanism of the development of culture can only consider these 
phenomena in their interrelationship. He must also take account of other aspects of 
culture--above all the social structure of society--as well as the influence of natural 
conditions, historical accidents, and other factors. But the present investigation is not 
historical. Our task is simpler: without going into the details of historical development to 
describe what happened from a cybernetic or, as is also said, from a systems point of 
view. As with the question of the origin of human beings, we shall not be interested in a 
profound, intricate presentation of the historical circumstances that led to the particular 
step in the development of culture at the particular place and time. Our approach remains 
very global and general. We are interested in just one aspect of culture (but it is the most 
important one in the mechanics of development!)--its structure as a control hierarchy. 
Accordingly, we will view the development of culture also as a process of increasing 
complexity in this hierarchy through successive metasystem transitions. We will show, as 
was also true in the case of biological development, that the most important stages in the 
development of language and thinking are separated from one another by precisely these 
metasystem transitions. 

 
¾¾THE SAVAGE STATE AND CIVILIZATION 

IN THE DEVELOPMENT of culture we discern above all two clearly distinct steps: the 
savage state (primitive culture) and civilization. The clear delineation between them does 
not mean that there are no transitional forms at all; the transition from the savage state to 
civilization is not carried out instantaneously, of course. But once it has begun, the 
development of culture through the creation of civilization takes place so rapidly that an 
obvious and indisputable difference between the new level of culture and the old 
manifests itself in a period of time which is vastly smaller than the time of existence in 
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the savage state. The emergence of civilization is a qualitative leap forward. The total 
time of existence of civilization on Earth (not more than 5,000 to 6,000 years) constitutes 
a small part of the time (at least 40,000 years) during which the human race has existed as 
a biologically invariable species. Thus, the emergence of civilization is a phenomenon 
which belongs entirely to the sphere of culture and is in not linked to the biological 
refinement of the human being. This distinguishes it from the emergence of language and 
labor activity but the consequences of this phenomenon for the biosphere are truly 
enormous, even if they are measured by simple quantitative indexes rather than by the 
complexity of the structures which emerge. In the short time during which civilization 
has existed, the human race has had incomparably more effect on the face of the planet 
than during the many millennia of the savage state. The size of the human race and its 
effect on the biosphere have grown at a particularly swift pace in the last three centuries; 
this is a result of the advances of science, the favorite child of civilization.  

This fact requires explanation. Such an abrupt qualitative leap forward in the observed 
manifestations of culture must be linked to some essential, fundamental change in the 
internal structure of culture. Language is the core of culture; it insures its uniformity, its 
"nervous system." We have in mind here not language as an abstract system possessing 
particular grammatical characteristics and used for expressing thoughts, but rather 
language as a living reality, as the social norm of linguistic activity. In other words, we 
have in mind the full observed (material if you like) side of thinking. Therefore, when we 
say ''language" we immediately add "and thinking". So language (and thinking) are the 
nervous system of culture and it may therefore be expected that there is some important 
difference between the language and thinking of primitive and of modern peoples. 
Indeed, a study of the culture of backward peoples reveals that they have a way of 
thinking which greatly differs from that of modern Europeans. This difference is by no 
means simply one in levels of knowledge. If a European is placed under primitive 
conditions he will hardly be able to use (or even show!) his knowledge of Ohm's law, the 
chemical formula for water, or the fact that the Earth revolves around the Sun and not 
vice versa. But the difference in way of thinking, in the approach to the phenomena of 
reality, remains and will quickly show itself in behavior.  

That difference can be summarized as follows. To a primitive person the observed 
phenomena of the world appear to be caused by invisible, supernatural beings. The 
primitives resort to incantations, ritual dances, sacrifices, strictly observed prohibitions 
(tabus), and so on to appease or drive off such beings. E. Taylor, one of the founders of 
the scientific study of primitive cultures, has called this view of the world animism, 
assuming the existence of spirits in all objects. To primitive people, certain mysterious 
relations and influences can exist between different objects ("mystic participation,'' in the 
terminology of the French ethnographer L. Levy Bruhl). Such relations always exist, in 
particular between the object and its image, or name. From this follow primitive magic 
and belief in the mystical connection between the tribe and a particular animal species 
(the totem ). 

But what is most surprising to the European is not the content of the representations of 
primitive people, rather it is their extreme resistance and insensitivity to the data of 



  

 144

experience. Primitive thinking is inconceivably conservative and closed. Obvious facts 
which, in the European's opinion, would inevitably have to change the notions of the 
primitive individual and force him to reconsider certain convictions do not, for some 
reason, have any effect on him at all. And attempts to persuade and prove often lead to 
results diametrically opposite to what was expected. It is this, not the belief in the 
existence of spirits and a mystical connection among objects, which is the more profound 
difference between primitive and modern thinking. In the last analysis, everything in the 
world is truly interrelated! When presenting the law of universal gravity we could say 
that there is a spirit of gravity in every body and each spirit strives to draw closely to the 
other spirit with a force proportional to the mass of the two bodies and inversely 
proportional to the square of the distance between them. This would not hinder us at all in 
correctly calculating the movement of the planets. But even if we do not use the word 
''spirit,'' we still use the word ''force.'' And, in actuality, what is the Newtonian force of 
gravity? It is the same spirit: something unseen, unheard, unfelt, without taste or smell, 
but nonetheless really existing and influencing things.  

These characteristics of the thinking of primitive people are amazingly widespread. It can 
be said that they are common to all primitive peoples, regardless of their racial affiliation 
and geographic conditions and despite differences in the concrete forms of culture where 
they manifest themselves. This gives us grounds to speak of primitive thinking, 
juxtaposing it to modern thinking and viewing it as the first, historically inevitable phase 
of human thinking. Without negating the correctness of such a division or of our attempts 
to explain the transition, it should be noted that, as with any division of a continuous 
process into distinct phases, there are transitional forms too; in the thinking of a modern 
civilized person we often discern characteristics that go back to the intellectual activity of 
mammoth and cave-bear hunters. 

 
¾¾THE METASYSTEM TRANSITION IN LINGUISTIC 
ACTIVITY 

THE PRIMITIVE PHASE is the phase of thinking which follows immediately after the 
emergence of language and is characterized by the fact that linguistic activity has not yet 
become its own object. The transition to the phase of modern thinking is a metasystem 
transition, in which there is an emergence of linguistic activity directed to linguistic 
activity. The language of primitive people is first-level language, while the language of 
modern people is second-level language (which specifically includes grammar and logic). 
But the transition to modern thinking is not simply a metasystem transition in language if 
we view language statically, as a certain possibility or method of activity. It includes a 
metasystem transition in real linguistic activity as a socially significant norm of behavior. 
With the transition to the phase of modern thinking it is not enough to think about 
something: one must also ask why one thinks that way, whether there is an alternative 
line of thought, and what would be the consequences of these particular thoughts. Thus, 
modern thinking is critical thinking, while primitive thinking can be called precritical. 
Critical thinking has become so accepted that it is taken for granted today. It is true that 
we sometimes say that a particular individual thinks uncritically: however, the term itself 
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means that uncritical thinking is the exception, not the rule. An uncritical quality in 
thinking is ordinarily considered a weakness, and attempts are made to explain it in some 
way-- perhaps by the influence of emotions, a desire to avoid certain conclusions, and so 
on. In the case of certain convictions (dogmas. for example), uncritical thinking may be 
justified by their special (or sacred) origin. But the general stream of our thinking 
continues to be critical. This does not mean that it is always original and free of 
stereotypes, but even when we think in stereotyped ways we are nonetheless thinking 
critically because of the nature of the stereotype. It includes linguistic activity directed to 
linguistic activity, it teaches to separate the name from the meaning and remember the 
arbitrary nature of the connection between them, and it teaches us to think. ''Why do I 
talk or think this way?'' Not only do we use this stereotype, we also employ the results of 
its use by preceding generations. 

Things are different in primitive society, where the relation between language and reality 
is not yet the object of thought. There the social norm of thinking is to treat the words, 
notions, and rules of one's culture as something unconditionally given, absolute, and 
inseparable from other elements of reality. This is a very fundamental difference from the 
modern way of thinking. Let us consider primitive thinking in more detail and show that 
its basic observed characteristics follow from this feature, its precritical nature. 

We use below material from the writings of L. Levy-Bruhl, Primitive Thinking.[1] This 
book combines material from Levy-Bruhl's La mentalité primitive and Les fonctions 
mentales dans les sociétés inférieures). This book is interesting because it collects a great 
deal of material on primitive culture which convincingly demonstrates the difference 
between primitive and modern thinking. A feature of Levy-Bruhl's conception is that he 
describes the thinking of individual members of primitive society as controlled by the 
collective representations of the given culture (actually, of course, this does not apply 
only to primitive society, but Levy-Bruhl somehow does not notice this). Also to Levy-
Bruhl's credit is his observation that collective representations in primitive society differ 
fundamentally from our own and therefore it is completely incorrect to explain the 
thinking of a primitive person by assuming (often unconsciously) that he is modern. The 
rest of Levy-Bruhl's conception is quite unimportant. He describes primitive thinking as 
''prelogical," "mystically oriented," and "controlled by the law of participation." These 
concepts remain very vague and add nothing to the material which has been collected. 
Only the term ''prelogical" thinking arouses our interest: it resembles our definition of 
primitive thinking as precritical. 

 
¾¾THE MAGIC OF WORDS 

THE ASSOCIATION name-meaning Li-Ri already exists in primitive thinking for 
language has become a firmly established part of life; but the association has not yet 
become an object of attention, because the metasystem transition to the second level of 
linguistic activity still has not taken place. Therefore the association Li-Ri is perceived in 
exactly the same way as any association Ri-Rj among elements of reality, for example the 
association between lightning and thunder. For primitive thinking the relation between an 
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object and its name is an absolute (so to speak physical) reality which simply cannot be 
doubted. In fact--and this follows from the fundamental characteristic of the association--
the primitive person thinks that there is a single object Li-Ri whose name Li and material 
appearance Ri are different parts or aspects. Many investigators testify to the existence of 
this attitude toward names among primitive peoples. ''The Indian regards his name not as 
a mere label, but as a distinct part of his personality, just as much as are his eyes or his 
teeth, and believes that injury will result as surely from the malicious handling of his 
name as from a wound inflicted on any part of his physical organism. This belief was 
found among various tribes from the Atlantic to the Pacific.''[2] Therefore many peoples 
follow the custom of not using a person s ''real" name in everyday life, but instead using a 
nickname which is viewed as accidental and arbitrary. A. B. Ellis, who studied the 
peoples of West Africa, states that they "believe that there is a real and material 
connection between a man and his name, and that by means of the name injury may be 
done to the man.... In consequence of this belief the name of the king of Dahomi is 
always kept secret.... It appears strange that the birth-name only, and not an alias, should 
be believed capable of carrying some of the personality of the bearer elsewhere . . . but 
the native view seems to be that the alias does not really belong to the man.''[3] This 
division of names into ''real'' and ''not real" is obviously the first step on the path toward 
the metasystem transition. 

The relation between an object and its image is perceived in exactly the same way as 
between an object and its name. In general primitive thinking does not make any essential 
distinction between the image and the name. This is not surprising, because the image is 
connected with the original of the same association that the name is. The image is the 
name and the name is the image. All images are names of an object taken together with 
the object itself form a single whole something (specifically a representation created by 
an association). Therefore it seems obvious that when we act on a part we act by the same 
token on the whole, which also means on its other parts By making an image of a buffalo 
pierced by an arrow the primitive believes that he is fostering a successful hunt for a real 
buffalo. G. Catlin, an artist and scientist who lived among the Mandans of North 
America, notes that they believed the pictures in the portraits he made borrowed a certain 
part of the life principle from their original. One of the Mandans told him that he knew he 
had put many buffalo in his book because the Indian was there while he drew them and 
after that observed that there were not so many buffalo for food. Obviously the Indian 
understood that the white man was not literally putting buffalo's in his book; but it was 
nevertheless obvious to him that in some sense (specifically in relation to the real-
buffalo-buffalo-picture complexes) the white man was putting the buffalo in his book, 
because their numbers declined. The word "put" [the Russian ulozhit'--to put in, pack, fit] 
is used here in a somewhat metaphorical sense if the primary meaning refers to an action 
on a ''material" buffalo, but this does not affect the validity of the thought. Many terms in 
all the world's languages are used metaphorically, and without this the development of 
language would be impossible. When we use the Russian expression ulozhit' sya v golove 
[literally--to be packed, fit in the head; the idiomatic meaning is ''to be understood"] we 
do not mean that something has been put in our head in the same way that it is packed in 
a suitcase. 
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¾¾SPIRITS AND THE LIKE 

NOW LET US MOVE ON to "spirits," which play such an important part in primitive 
thinking. We shall see that the appearance of supernatural beings is an inevitable 
consequence of the emergence of language and that they disappear (with the same 
inevitability as they appeared) only upon the metasystem transition to the level of critical 
thinking.  

First let us think about the situation where language already exists but its relation to 
reality still has not become an object of study. Thanks to language, something like a 
doubling of objects occurs: instead of object Ri a person deals with a complex RiLi where 
Li is the name of Ri . In this complex, the linguistic object Li is the more accessible and, in 
this sense, more permanent component. One can say the word "sun" regardless of 
whether the sun is visible at the particular moment or not. One can repeat the name of a 
person as often as one likes while the person himself may be long dead. Each time his 
face will rise up in the imagination of the speaker. As a result the relation between the 
name and the meaning becomes inverted: the object Li acquires the characteristics of 
something primary and the object Ri becomes secondary. The normal relation is restored 
only after the metasystem transition, when Ri and Li are equally objects of attention, and 
the connection between them is of special importance. Until this has happened the word 
Li plays the leading role in the complex RiLi , and the faithful imagination is ready to link 
any pictures with each word used in social linguistic practices. Some words of the 
language of primitive culture signify objects which really exist from our modern point of 
view while others signify things which from our point of view do not really exist (spirits 
and so on). But from the point of view of the primitive individual there is no difference 
between them or perhaps simply a quantitative one. Ordinary objects may or may not be 
visible (perhaps they are hidden; perhaps it is dark). They may be visible only to some. 
The same is true of spirits, only it is harder to see them; either no one sees them or they 
are seen by sorcerers. Among the Klamath Indians in North America, the medicine man 
who was summoned to a sick person had to consult with the spirits of certain animals. 
Only one who had gone through a five-year course of preparation to be a medicine man 
could see these spirits, but he saw them just as plainly as the objects around himself. The 
Taragumars believed that large snakes with horns and enormous eyes lived in the rivers. 
But only shamans could see them. Among the Buryats the opinion was widespread that 
when a child became dangerously ill the cause was a little animal called an anokkha 
which was eating the top of the child s head away. The anokkha resembled a mole or cat, 
but only shamans could see it. Among the Guichols there is a ritual ceremony in which 
the heads of does are placed next to the heads of stags and it is considered that both the 
does and the stags have antlers, although no one except the shamans see them. 

There is an enormously broad variety of invisible objects in the representations of 
primitive peoples. They are not just formless spirits, but also objects or beings which 
have completely defined external appearances (except that they are not always perceived 
and not perceived by all). Language provides an abundance of material for the creation of 
imagined essences. Any quality is easily and without difficulty converted into an essence. 
The difference between a living person and a dead one produces the soul, and the 
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difference between a sick person and a healthy one gives us illness. The representation of 
illness as something substantial, objective, which may enter and depart from a body and 
move in space, is perhaps typical of all primitive peoples. The same thing is true of the 
soul. It is curious that just as there are different illnesses among some peoples there also 
exist different "souls" in the human being. According to the observations of A. B. Ellis 
the Negroes of the West African coast distinguish two human spirits: kra and sraman. 
Kra lives in the person as long as he is alive but departs when the person sleeps; dreams 
are the adventures of the kra. When a person dies his kra may move to the body of 
another person or animal, but it may instead wander the world. The sraman forms only 
upon the death of the person and in the land of the dead continues the way of life which 
the deceased had followed.  

This belief shows even more clearly among the American Indians. The Maenads, for 
example, believe that every person carries several spirits: one of them is white, another is 
swarthy, and the third is a light color. The Dakotas believe that a person has four souls: 
the corporal soul, which dies along with the person; the spirit, which lives with the body 
or near it; the soul, responsible for the actions of the body; and the soul that always 
remains near a lock of the deceased's hair, which is preserved by relatives until it can be 
thrown onto enemy territory, whereupon it becomes a wandering ghost carrying illness 
and death. G. H. Jones, a scientist who studied beliefs in Korea, writes of spirits that 
occupy the sky and everywhere on earth. They supposedly lie in wait for a person along 
the roads, in the trees, in the mountains and valleys, and in the rivers and streams. They 
follow the person constantly even to his own home, where they have settled within the 
walls, hang from the beams, and attach themselves to the room dividers. 

 
¾¾THE TRASH HEAP OF REPRESENTATIONS 

AS WE HAVE NOTED, it is not the fact of belief in the existence of invisible things and 
influences that distinguishes primitive thinking from modern thinking, but the content of 
the representations and particularly the relation between the content and the data of 
experience. We believe in the existence of neutrons although no one has ever seen them 
and never will. But we know that all the words in our vocabulary have meaning only to 
the extent that, taken together, they successfully describe observed phenomena and help 
to predict them. As soon as they stop fulfilling this role, as a result of new data from 
experience or owing to reorganisation of the system of word use (theory), we toss them 
aside without regret. That is what happened, for example, with "phlogiston'' or ether. 
Even earlier, all kinds of imagined beings and objects which were so typical of the 
thinking of our ancestors disappeared from language and thinking. What irritates us in 
primitive thinking is not the assumption of the existence of spirits but rather that this 
assumption, coming together with certain assumptions about the traits and habits of the 
spirits, explains nothing at all and often simply contradicts experience. We shall cite a 
few typical observations by investigators. In his Nicobar Island diaries, V. Solomon 
wrote: ''The people in all villages have performed the ceremony called "tanangla,'" 
signifying either "support" or "prevention." This is to prevent the illness caused by the 
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north-east monsoon. Poor Nicobarese! They do the same thing year after year, but to no 
effect.'' [4] 

And M. Dobrizhoffer observed that 

A wound inflicted with a spear often gapes so wide that it affords ample room for life 
to go out and death to come in: yet if the man dies of the wound they madly believe 
him killed not by a weapon but by the deadly arts of the jugglers.... They are 
persuaded that the juggler will be banished from amongst the living and made to atone 
for their relation's death if the heart and tongue be pulled out of the dead man's body 
immediately after his decease, roasted at the fire and given to dogs to devour. Though 
so many hearts and tongues are devoured, and they never observed any of the jugglers 
die, yet they still religiously adhere to the custom of their ancestors by cutting out the 
hearts and tongues of infants and adults of both sexes, as soon as they have expired.[5] 

Because primitive people are unable to make their representations an object of analysis, 
these representations form a kind of trash heap. The trash heap accumulates easily but no 
one works to clean it up. For the primitive there are not and cannot be meaningless 
words. If he does not understand a word it frightens him as an unfamiliar animal, weapon, 
or natural phenomenon would. An opinion which has arisen as a result of the chance 
combination of circumstances is preserved from generation to generation without any real 
basis. The explanation of some phenomenon may be completely arbitrary and nonetheless 
fully satisfy the primitive. Critical thinking considers each explanation (linguistic model 
of reality) alongside other competing explanations (models) and it is not satisfied until it 
is shown that the particular explanation is better than its rivals. In logic this is called the 
law of sufficient grounds. The law of sufficient grounds is absolutely foreign to 
precritical thinking. It is here that the metasystem transition which separates modern 
thinking from primitive thinking is seen most clearly.  

Thanks to this characteristic the primitive's belief in the effectiveness of magic 
incantations, sorcery, and the like is unconquerable. His "theory" gives an explanation 
(often not just one but several!) for everything that happens around him. He cannot yet 
evaluate his theory--or even individual parts of it--critically. P. Bowdich tells of a savage 
who took up a fetish which was supposed to make him invulnerable. He decided to test it 
and let himself be shot in the arm; it broke his bone. The sorcerer explained that the 
offended fetish had just revealed to him the cause of what had happened: the young man 
had had sexual relations with his wife on a forbidden day. Everyone was satisfied. The 
wounded man admitted that it was true and his fellow tribesmen were only reinforced in 
their belief. Innumerable similar examples could be given.[6] 

 
¾¾BELIEF AND KNOWLEDGE 

WHEN WE SAY that a primitive person believes in the existence of spirits or certain 
actions by them we predispose ourselves to an incorrect understanding of his psychology. 
When speaking of belief we juxtapose it to knowledge. But the very difference between 
belief and knowledge emerges only at the level of critical thinking and reflects a 
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difference in the psychological validity of representations, which follows from the 
difference in their sources. For a primitive there is no difference between belief and 
knowledge and his attitude toward his representations resembles our attitude toward our 
knowledge, not our beliefs. From a psychological point of view the primitive person 
knows that spirits exist, he knows that incantations can drive out illness or inflict it, and 
he knows that after death he will live in the land of the dead. Therefore we shall avoid 
calling the primitive person's worldview primitive religion; the terms "primitive 
philosophy'' or "primitive science'' have equal right to exist. These forms of activity can 
only be distinguished at the level of critical thinking. This refers both to the difference 
between belief and knowledge and to the difference between the ''otherworldly'' and that 
which is ''of this world.'' The fact that the representations of primitive people involve 
spirits, ghosts, shadows of the dead, and other devil figures still does not make these 
representations religious, because all of these things are perceived as entirely of this 
world and just as real (material if you like) as the animals, wind, or sunlight. L. Levy-
Bruhl, who defines the psychological activity of primitive man as mystic, nonetheless 
emphasizes that this is not at all the same as mysticism in the modern meaning of the 
word. ''For lack of a better term,'' he writes, ''I am going to use this one; this is not 
because of its connection with the religious mysticism of our societies, which is 
something quite different, but because in the narrowest meaning of the word "mystic" is 
close to belief in forces, influences, and actions which are unnoticed and intangible to the 
senses but real all the same.'' Many observers are struck by how real the shadows or 
spirits of their ancestors seem to primitive peoples. R. Codrington writes about the 
Melanesians:[7] When a native says that he is a person, he wants it understood that he is a 
person not a spirit. He does not mean that he is a person not an animal. To him, 
intelligent beings in the world are divided into two categories: people who are alive and 
people who have died. In the Motu tribe this is ta-mur and ta-mate. When the 
Melanesians see white people for the first time they take them for ta-mate, that is, for 
spirits who have returned to life, and when the whites ask the natives who they are, the 
latter call themselves ta-mur, that is, people not spirits. Among the Chiriguanos of South 
America when two people meet they exchange this greeting: "Are you alive?''--"Yes, I 
am alive.'' Some other South American tribes also use this form. 

 
¾¾THE CONSERVATISM OF PRECRITICAL THINKING 

CONSERVATISM is inherent in precritical thinking; it is a direct consequence of the 
absence of an apparatus for changing linguistic models. All conceivable kinds of rules 
and prohibitions guide behavior and thinking along a strictly defined path sanctified by 
tradition. Violation of traditions evokes superstitious terror. There have been cases where 
people who accidentally violated a tabu died when they learned what they had done. 
They knew that they were supposed to die and they died as a result of self-suggestion. 

Of course, this does not mean that there is no progress whatsoever in primitive society. 
Within the limits of what is permitted by custom, primitive people sometimes 
demonstrate amazing feats of art, dexterity, patience, and persistence. Within the same 
framework tools and weapons are refined from generation to generation and experience is 
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accumulated. The trouble is that these limitations are extremely narrow and rigid. Only 
exceptional circumstances can force a tribe (most likely the remnants of a tribe which has 
been destroyed by enemies or is dying from hunger) to violate custom. It was probably in 
precisely such situations that the major advances in primitive culture were made. A 
people which has fallen into isolation and owing to unfavorable natural conditions is not 
able to multiply and break up into bitterly hostile peoples may maintain its level of 
primitive culture unchanged for millennia.  

In the stage of precritical thinking, language plays a paradoxical role. In performance of 
its communicative function (communication among people, passing experience down 
from generation to generation, stablizing social groups) it is useful to people. But then its 
noncommunicative, modeling function causes more harm than good. This refers to those 
models which are created not at the level of the association of nonlinguistic 
representations but only at the level of language, that is, primarily the primitive "theory 
of spirits.'' As we have already noted, the communicative function itself becomes possible 
only thanks to the modeling function. But as long as linguistic models merely reflect 
neuronal models we speak of the purely communicative functions; when new models 
(theories) are created we speak of the noncommunicative function. In primitive society 
we see two theories: the rudiments of arithmetic (counting by means of fingers, chips, 
and the like) and the ''theory of spirits.'' Arithmetic is, of course, a positive phenomenon, 
but it does not play a major part in primitive life and is in fact absent among many 
peoples: the ''theory of spirits,'' on the contrary, permeates all primitive life and has a 
negative influence on it. And this is the paradox. The first independent steps of the 
linguistic system, which should according to the idea lead to (and later in fact do lead to) 
an enormous leap forward in modeling reality, at first produce poisonous discharges 
which retard further development. This is a result of the savage so to speak, growth of the 
''theory of spirits.'' It can be compared with a weed which sprouts on well-fertilized soil if 
the garden is not managed. As we have seen, the weed's seeds are contained in the soil 
itself, in language. Only the transition to the level of critical thinking (careful cultivation 
of the soil, selection of plants for crops, and weed control) produces the expected yield. 

 
¾¾THE EMERGENCE OF CIVILIZATION 

WE KNOW THAT this transition took place. The emergence of critical thinking was the 
most important milepost of evolution after the appearance of the human being. Critical 
thinking and civilization arise at the same time and develop in close interdependence. 
Increasing labor productivity, contacts among different tribal cultures, and the breakup of 
society into classes all inexorably weaken traditional tribal thinking and force people to 
reflect upon the content of their representations and compare them with those of other 
cultures. In this critical thinking takes root and gradually becomes the norm. On the other 
hand, critical thinking emancipates people and leads to a high rise in labor productivity 
and to the appearance of new forms of behavior. Both processes support and reinforce 
one another: society begins to develop swiftly. There is a kind of 180 degree turn in the 
vector of society's interest: in primitive society it is directed backward, to the past, to 
observance of the laws of ancestors; in a developing situation, at least among part of 
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society (the "creative minority'' according to A. Toynbee), it is pointed forward, into the 
future, toward change in the existing situation. Thanks to a metasystem transition culture 
acquires dynamism and its own internal impetus toward development. The redirection of 
language activity to itself creates the stairway effect: each level of logical (language) 
thinking, which has emerged as a result of the analysis of logical thinking, becomes, in its 
turn an object of logical analysis. Critical thinking is an ultrametasystem capable of self-
development. Primitive tribal cultures evolve by the formation of groups and the struggle 
for existence among them, just as in the animal world. Civilization evolves under the 
influence of internal factors. It is true that the civilizations of the past typically stopped in 
their development upon reaching a certain level; but all the same the leaps forward were 
extremely great in comparison with the advances of primitive cultures, and they grew 
larger as critical thinking became ever more established. Modern civilization is global, so 
that the factor of its struggle for existence as a whole (that is to say, against rivals) 
disappears and all its development occurs exclusively through the action of internal 
contradictions. Essentially, it was only with the transition to the level of critical thinking 
that the revolutionary essence of the emergence of thinking manifested itself, and the age 
of reason began in earnest.  

In the process of a metasystem transition there is, as we know, a moment when the new 
attribute demonstrates its superiority in a way which cannot be doubted, and from this 
moment the metasystem transition may be considered finally and irreversibly completed. 
In the transition to critical thinking this moment was the culture of Ancient Greece, 
which it is absolutely correct to call the cradle of modern civilization and culture. At that 
time, about 2.500 years ago, philosophy, logic, and mathematics (mathematics in the full 
sense of the word, that is to say, including proof) emerged. And from that time critical 
thinking became the recognized and essential basis of developing culture.  
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CHAPTER NINE  
Mathematics Before The Greeks 

 
NATURE'S MISTAKE 

WE HAVE ALREADY mentioned the process of counting as an example of using a 
model of reality that is not contained in the brain but is created at the level of language. 
This is a very clear example. Counting is based on the ability to divide the surrounding 
world up into distinct objects. This ability emerged quite far back in the course of 
evolution; the higher vertebrates appear to have it in the same degree as humans do. It is 
plain that a living being capable of distinguishing separate objects would find it useful in 
the struggle for existence if it could also count them (for example, this would help one 
become oriented in an unfamiliar area). Description by means of numbers is a natural, 
integrated complement to differential description by recognition of distinct objects. Yet 
the cybernetic apparatus for recognizing numbers, for counting, can be extremely simple. 
This task is much easier than distinguishing among separate objects. Therefore one would 
expect that, within limits imposed by the organization of the organs of sight, recognition 
of numbers would have appeared in the course of evolution. The human eye can 
distinguish tens and hundreds of distinct objects at once. We might expect that human 
beings would be able to tell a group of 200 objects from a group of 201 just as easily as 
we tell two objects from three.  

But nature did not wish or was unable to give us this capability. The numbers which are 
immediately recognizable are ridiculously few, usually four or five. Through training 
certain progress can be made, but this is done by mentally breaking up into groups or by 
memorizing pictures as whole units and then counting them in the mind. The limitation 
on direct discrimination remains. It is in no way related to the organization of the organs 
of sight and apparently results from some more deep-seated characteristics of brain 
structure. We do not yet know what they are. One fact forces us to ponder and suggests 
some hypotheses:  

In addition to spatial discrimination of numbers there is temporal discrimination. You 
never confuse two knocks at a door with three or one. But eight or ten knocks is already, 
no doubt, ''many'' and we can only distinguish such sounds by their total length (this 
corresponds to the total area occupied by homogeneous objects in spatial discrimination). 
The limit which restricts both types of discrimination is the same. Is this a chance 
coincidence? It is possible that direct discrimination of numbers always has a temporal 
nature and that the capacity of the instantaneous memory limits the number of situations 
it can distinguish. In this case the limitation on spatial discrimination is explained by the 
hypothesis that the visual image is scanned into a time sequence (and there is a rapid 
switching of the eye's attention from object to object, which was discussed above) and is 
fed to the very same apparatus for analysis. 
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Be that as it may, nature has left an unfortunate gap in our mental device; therefore 
human beings begin work to create a "continuation of the brain" by correcting nature's 
mistake--humans learn to count, and thus mathematics begins. 

 
¾¾COUNTING AND MEASUREMENT 

FACTS TESTIFY clearly that counting emerges before the names of the numbers. In 
other words, the initial linguistic objects for constructing a model are not words but 
distinct, uniform objects: fingers, stones, knots, and lines. That is natural. During the 
emergence of language, words refer only to those concepts which already exist, which is 
to say, those which are recognized. The words ''one," ''two,'' and possibly ''three'' appear 
independently of counting (taking "counting" to mean a procedure which is prolonged in 
time and recognized as such) because they rely on the corresponding neuronal concepts. 
There is as yet nowhere from which to take the words for large numbers. To convey the 
size of some group of objects, the human being uses standard objects, establishing a one-
to-one correspondence among them, one after the other. This is counting. When counting 
becomes a widespread and customary matter, word designations begin to emerge for the 
most frequently encountered (in other words small) groups of standard objects. Traces of 
their origin have remained in certain numbers. For example, the Russian word for five, 
pyat,' is suspiciously similar to the old Slavic pyad,' which means hand (five fingers). 

There are primitive peoples who have only ''one,'' ''two,'' and ''three''; everything else is 
"many.'' But this in no way excludes the ability to count by using standard objects, or to 
convey the idea of size by breaking down objects into groups of two or three, or by using 
as yet unreduced expressions, such as ''as many as the digits on two hands, one foot, plus 
one.'' The need for counting is simply not yet great enough to establish special words. 
The sequence ''one, two, three, many'' does not reflect an inability to count to four and 
beyond, as is sometimes thought, but rather a distinction the human mind makes between 
the first three numbers and all the rest. For we can only unconsciously--and without 
exertion--distinguish the numbers to three. To recognize a group of four we must 
concentrate especially. Thus it is true for us as well as for savages that everything which 
is more than three is ''many.''  

To convey large numbers people began to count in "large units'': fives, tens, and twenties. 
In all the counting systems known to us large units are divisible by five, which indicates 
that the first counting tool was always the fingers. Still larger units arose from 
combinations of large units. Separate hieroglyphs depicting numbers up to ten million are 
found in Ancient Egyptian papyruses.  

The beginning of measurement, just as with counting, goes back to ancient times. 
Measurement is already found among the primitive peoples. Measurement assumes an 
ability to count, and additionally it demands the introduction of a unit of measure and a 
measurement procedure that involves comparing what is being measured against a unit of 
measurement. The most ancient measures refer to the human body: pace, cubit [lit. 
''elbow''; the unit was the length of the forearm], and foot.  
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With the emergence of civilization the need for counting and for the ability to perform 
mathematical operations increases greatly. In developed social production, the regulation 
of relations among people (exchange, division of property, imposition of taxes) demands 
a knowledge of arithmetic and the elements of geometry. And we find this knowledge in 
the most ancient civilizations known to us: Babylon and Egypt. 

 
¾¾NUMBER NOTATION 

THE WRITING OF NUMBERS in ancient times demonstrates graphically the attitude 
toward the number as a direct model of reality. Let us take the Egyptian system for 
example. It was based on the decimal principle and contained hieroglyphs for the one 
(vertical line) and ''large ones.'' To depict a number it was necessary to repeat the 
hieroglyph as many times as it occurred in the number. Numbers were written in a similar 
way by other ancient peoples.  
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Figure 9.1.  Number notation by different ancient peoples. Adapted from G. I. 
Gleizer Istoriya matematiki v shkole (The History of Mathematics in School) 

Prosveshchenie Publishing House Moscow, 1964. 
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The Roman system is close to this very form of notation. It differs only in that when a 
smaller unit stands to the left of a larger it must be subtracted. This minor refinement 
(together with introduction of the intermediate units V, L, and D) eliminated the necessity 
of writing out a series of many identical symbols, giving the Roman system such vitality 
that it continues to exist to the present day.  

An even more radical method of avoiding the cumbersome repetition of symbols is to 
designate key numbers (less than 10, then even tens, hundreds, and so on) by successive 
letters of the alphabet. This is precisely what the Greeks did in the eighth century B.C. 
Their alphabet was large enough for ones, tens, and hundreds; numbers larger than 1,000 
were depicted by letters with a small slash mark to the left and beneath. Thus, [beta] 
signified two, [eta] signified 20, and /[beta] signified 2,000. Many peoples (such as the 
Armenians, the Jews, the Slavs) borrowed this system from the Greeks. With alphabetic 
numeration the “model” form of the number completely disappears; it becomes merely a 
symbol. Simplification (for purposes of rapid writing) of characters which initially had 
model form leads to the same result. 

"Arabic'' numerals are believed to be of Indian origin, although not all specialists agree 
with this hypothesis. Numbers are first encountered in Indian writings in the third century 
B.C. At this time two forms of writing were used, Kharoshti and Brahmi, and each one 
had its own numerals. The Kharoshti system is interesting because the number four was 
selected as the intermediate stage between 1 and 10. It is likely that the oblique cross (x) 
used as a 4 tempted the creators of the Kharoshti numbers by its simplicity of writing 
while still preserving the modeling quality in full (four rays). The Brahmi numerals are 
more economical. It is believed that the first nine Brahmi characters finally gave rise to 
our modern numerals. 

 

Figure 9.2.  Kharoshti numerals. 
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Figure 9.3.  Brahmi numerals 

 

 

 

Figure 9.4.  The genealogy of modern numerals (according to Menninger, 
Zohlwort and Ziffer) 

The loss of the model form in numbers was more than compensated for in the ancient 
world by the use of the abacus, a counting board with parallel grooves along which 
pebbles were moved. The different grooves corresponded to units of different worth. The 
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abacus was probably invented by the Babylonians. It was used for all four arithmetic 
operations. Greek merchants used the abacus extensively and the same kind of counting 
board was common among the Romans. The Latin word for pebble, ''calculus,'' began 
also to mean "computation.'' And the Romans conceived the idea of putting the counting 
pebbles on rods, which is how the abacus still in use today originated. These very simple 
counting devices were enormously important and only gave way to computations on 
slateboards or paper after the positional system of notation had completely formed. 

 
¾¾THE PLACE-VALUE SYSTEM 

THE BABYLONIANS laid the foundations of the place-value system the number system 
they borrowed from the Sumerians, we see two basic ''large ones'': ten and sixty, from the 
most ancient clay tablets which have come down to us, dating to the beginning of the 
third millennium B.C. We can only guess where the number sixty was taken from. The 
well-known historian of mathematics O. Neigebauer believes that it originated in the 
relation between the basic monetary units in circulation in Mesopotamia: one mana (in 
Greek mina was sixty shekels). Such an explanation does not satisfy our curiosity because 
the question immediately arises: why are there sixty shekels in a mana? Isn't it precisely 
because a system based on sixty was used? After all, we don't count by tens and hundreds 
because there are 100 kopecks in a ruble! F. Thureau-Dangin, an Assyriologist, gives 
linguistic arguments to show that the number system was the primary phenomenon and 
the system of measures came second. Selection of the number sixty was apparently a 
historical accident, but one can hardly doubt that this accident was promoted by an 
important characteristic of the number sixty, namely that it has an extraordinarily large 
number of divisors 2, 3, 4, 5, 6, 10, 12, 15, 20, and 30). This is a very useful feature both 
for a monetary unit (since its existent money has been evenly subdivided) and for 
establishing a system of counting (if we assume that some wise man introduced it, guided 
considerations of convenience in calculation). 

The mathematical culture of the Babylonians is known to us from texts dating from the 
Ancient Babylonian (1800-1600 B.C.) and the Seleucidae epoch (305-64 B.C.). A 
comparison of these texts shows that no radical changes took place in the mathematics of 
the Babylonians during this time.  

The Babylonians depicted 1 by a narrow vertical wedge q, while 10 was a wide 

horizontal wedge . 

The number 35 looked like this .                       

All numbers up to 59 were represented analogously. But 60 was depicted once again by a 
narrow vertical wedge, just the same as 1. In the most ancient tablets it can be seen that 
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the wedge representing 60 is larger than the wedge for 1. Thus the number 60 was not 
only understood as a "larger one" but was so represented. "Large tens" appeared 
correspondingly for large units multiplied by 10. Later, the difference between large and 
small wedges was lost and they began to be distinguished by their position. In this way 
the positional system arose. A Babylonian would write the number 747 = 12 % 60 + 27 in 

the form .  The third 60-base position corresponds to the number 
602 = 3,600 and so on. But the most remarkable thing is that the Babylonians also 
represented fractions in this way. In a number following the number of ones, each unit 
signified 1/60, in the next number each unit was 1/3,600 , and so on. In modern decimal 
notation we separate the whole part from the fraction part by a period or comma. The 

Babylonians did not. The number could signify 1.5 or 90 with equal success. 
This same uncertainty occurred in writing whole numbers: the numbers n, n % 60, n % 
602, and so on were indistinguishable. Multipliers and divisors divisible by 60 had to be 
added according to the sense. Because 60 is a fairly large number, this did not cause any 
particular problems. 

When we compare the Babylonian positional system with our modern one we see that the 
uncertainty in the multiplier 60 is a result of the absence of a character for zero, which we 
would add the necessary number of times at the end of a whole number or the beginning 
of a fraction. Another result of the absence of the zero is an even more serious 
uncertainty in interpreting a numerical notation that in our system requires a zero in an 
intermediate position. In the Babylonian notation, how can the number 3,601 = 1.602 + 
0.60 + 1 be distinguished from the number 61 = 1.60 + 1? Both of these numbers are 
represented by two units (ones).  Sometimes this kind of uncertainty was eliminated by 
separating the numbers, leaving an empty place for the missing position. But this method 
was not used systematically and in many cases a large gap between numbers did not 
mean any thing. In the astronomical tables of the Seleucidae epoch one finds the missing 
position designated by means of a character resembling our period. We do not find 
anything of the sort in the Ancient Babylonian epoch. But how were the ancient 
Babylonians able to avoid confusion?  

The solution to the riddle is believed to consist in the following.[1] The early Babylonian 
mathematical texts which have come down to us are collections of problems and their 
solutions, unquestionably created as learning aids. Their purpose was to teach practical 
methods of solving problems. But not one of the texts describes how to perform 
arithmetic operations, in particular the operations, complex for that time, of 
multiplication and division. Therefore, we assume that the students knew how to do them. 
It is improbable that they performed the computations in their head: they probably used 
some abacus-like calculating device. On the abacus, numbers appear in their natural, 
spontaneously positioned form and no special character for the zero is needed; the groove 
corresponding to an empty position simply remains without pebbles. Representation of a 
number on the abacus was the basic form of assigning a number, and there was no 
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uncertainty in this representation. The numbers given in cuneiform mathematical texts 
serve as answers to stage-by-stage calculations, so that they could be used to check 
correctness during the solution. The student made the calculations on the abacus and 
checked them against the clay tablet. Clearly the absence of a character for empty 
positions did not hinder such checking at all. When voluminous astronomical tables 
became widespread and were no longer used for checks but rather as the sole source of 
data, a separation sign began to be used to represent the empty positions. But the 
Babylonians never put their own ''zero'' at the end of a word; it is obvious that they 
perceived it only as a separator, and not as a number.  

Having familiarized themselves with both the Egyptian and the Babylonian systems of 
writing fractions and performing operations on them, the Greeks selected the Babylonian 
system for astronomical calculations because it was incomparably better, but they 
preserved their own alphabetic system for writing whole numbers. Thus the Greek system 
used in astronomy was a mixed one: the whole part of the number was represented in the 
decimal nonpositional system while the fractional part was in the 60-base positional 
system--not a very logical solution by the creators of logic! Following their happy 
example we continue today to count hours and degrees (angular) in tens and hundreds, 
but we divide them into minutes and seconds. 

The Greeks did introduce the modern character for zero into the positional system, 
deriving it--in the opinion of a majority of specialists--from the first letter of the wo 
doudeg, which means ''nothing." In writing whole numbers (except for the number 0) this 
character was not used, naturally, because the alphabetic system which the Greeks used 
was not a positional one. 

The modern number system was invented by the Indians at the beginning of the sixth 
century A.D. They applied the Babylonian positional principle and the Greek character 
for zero to designate an empty place to a base of 10, not 60. The system proved to be 
consistent, economical, not in contradiction with tradition, and extremely convenient for 
computations. 

The Indians passed their system on to the Arabs. The positional number system appeared 
in Europe in the twelfth century with translations of al-Kwarizmi's famous Arab 
arithmetic. It came into bitter conflict with the traditional Roman system and in the end 
won out. As late as the sixteenth century, however, an arithmetic textbook was published 
in Germany and went through many editions using exclusively ''German,'' which is to say 
Roman, numerals. It would be better to say ''numbers,'' because at that time the word 
''numerals" was used only for the characters of the Indian system. In the preface of this 
textbook the author writes: ''I have presented this arithmetic in conventional German 
numbers for the benefit and use of the uneducated reader (who will find it difficult to 
learn numerals at the same time).'' Decimal fractions began to be used in Europe with 
Simon Stevin (1548-1620). 



  

 162

 
¾¾APPLIED ARITHMETIC 

THE MAIN LINE to modern science lies through the culture of Ancient Greece, which 
inherited the achievements of the ancient Egyptians and Babylonians. The other 
influences and relations (in particular the transmission function carried out by the Arabs) 
were of greater or lesser importance but, evidently, not crucial. The sources of the 
Egyptian and Sumerian-Babylonian civilizations are lost in the dark of primitive cultures. 
In our review of the history of science, therefore, we shall limit ourselves to the 
Egyptians, Babylonians, and Greeks.  

We have already discussed the number notation of the Egyptians and Babylonians. All 
we need now is to add a few words about how the Egyptians wrote fractions. From a 
modern point of view their system was very original, and very inconvenient. The 
Egyptians had a special form of notation used only for so-called 'basic'' fractions. that is, 
those obtained by dividing one by a whole number; in addition they used two simple 
fractions which had had special hieroglyphs from ancient times: 2/3 and 3/4. In the very 
latest papyruses, however, the special designation for 3/4 disappeared. To write a basic 

fraction the symbol , which meant "part," had to be placed above the 
conventional number (the denominator).  

Thus  

         y y n = 1/12. 

The Egyptians expanded the other fractions into the sum of several basic fractions. For 
example, 3/8 was written as 1/4 + 1/8, and 2/7 was written as 1/4 + 1/ 28. For the result of 
dividing 2 by 29 an Egyptian table gave the following expansion: 

2/29 = 1/29 + 1/58 = 1/174 + 1/232. 

We are not going to dwell on the computational techniques of the Egyptians and 
Babylonians. It is enough to say that they both were able to perform the four arithmetic 
operations on all numbers (whole, fractional, or mixed) which they met in practice. They 
used auxiliary mathematical tables for operations with fractions; these were tables of 
inverse numbers among the Babylonians and tables of the doubling of basic fractions 
among the Egyptians. The Egyptians wrote intermediate results on papyrus, whereas the 
Babylonians apparently performed their operations on an abacus and thus the details of 
their technique remain unknown.  

What did the ancient mathematicians calculate? One fragment of an Egyptian papyrus 
from the times of the New Empire (1500-500 B.C.) describes the activity of the pharaoh's 
scribes very colorfully and with a large dose of humor; for this reason it is invariably 
cited in we shall not be an exception. Here is the excerpt, somewhat shortened: 
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I will cause you to know how matters stand with you, when you say "I am the scribe 
who issues commands to the army. ". . . I will cause you to be abashed when I disclose 
to you a command of your lord, you, who are his Royal Scribe.... the clever scribe 
who is at the head of the troops. A building ramp is to be constructed, 730 cubits long, 
55 cubits wide, containing 120 compartments, and filled with reeds and beams; 60 
cubits high at its summit, 30 cubits in the middle, with a batter of twice 15 cubits and 
its pavement 5 cubits. The quantity of bricks needed for it is asked of the generals, and 
the scribes are all asked together, without one of them knowing anything. They all put 
their trust in you and say "You are the clever scribe. my friend! Decide for us 
quickly!" Behold your name is famous.... Answer us how many bricks are needed for 
it?[2] 

Despite its popularity, this text is not too intelligible. But it nevertheless does give an idea 
of the problems Egyptian scribes had to solve. 

Specifically, we see that they were supposed to be able to calculate areas and volumes 
(how accurately is another question). And in fact, the Egyptians possessed a certain 
knowledge of geometry. According to the very sound opinion of the Ancient Greeks, this 
knowledge arose in Egypt itself. One of the philosophers of Aristotle's school begins his 
treatise with the words: 

Because we must survey the beginning of the sciences and arts here we will state that, 
according to the testimony of many, geometry was discovered by the Egyptians and 
originated during the measurement of land. This measurement was necessary because 
the flooding of the Nile River constantly washed away the boundaries. There is 
nothing surprising in the fact that this science, like others, arose from human need. 
Every emerging knowledge passes from incomplete to complete. Originating through 
sensory perception it increasingly becomes an object of our consideration and is 
finally mastered by our reason. [3] 

The division of knowledge into incomplete and complete and a certain apologetic tone 
concerning the "low'' origin of the science are, of course, from the Greek philosopher. 
Neither the Babylonians nor the Egyptians had such ideas. For them knowledge was 
something completely homogeneous. They were able to make geometric constructions 
and knew the formulas for the area of a triangle and circle just as they knew how to shoot 
bows and knew the properties of medicinal plants and the dates of the Nile's floods. They 
did not know geometry as the art of deriving "true" formulas; among them it existed, as 
B. Van der Waerden expressed it, only as a division of applied arithmetic. It is obvious 
that they employed certain guiding considerations in obtaining the formulas, but these 
considerations were of little interest to them. They did not affect their attitude toward the 
formula. 

 
¾¾THE ANCIENTS' KNOWLEDGE OF GEOMETRY 

WHAT GEOMETRY did the Egyptians know? -- the correct formulas for the area of a 
triangle, a rectangle, and a trapezium. The area of an irregular quadrangle, to judge by the 
one remaining document, was calculated as follows: half the sum of two opposite sides 
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was multiplied by half the sum of the other two opposite sides. This formula is grossly 
wrong (except where the quadrangle is rectangular, in which case the formula is 
unnecessary). There is no reasonable sense in which it can even be called approximate. It 
appears that this is the first historically recorded example of a proposition which is 
derived from "general considerations," not from a comparison with the data of 
experience. The Egyptians calculated the area of a circle by squaring 8/9, of its diameter, 
a difference of about 1 percent from the value of π .  

They calculated the volumes of parallelepipeds and cylinders by multiplying the area of 
the base by the height. The most sophisticated achievement of Egyptian geometry known 
to us is correct computation of the volume of a truncated pyramid with a square base (the 
Moscow papyrus). It follows the formula 

V=( a2 +ab +b2) h/3 

where h is the height, a and b are the sides of the upper and lower bases. 

We have only fragmentary information on the Ancient Babylonians' knowledge of 
mathematics, but we can still from a general idea of it. It is completely certain that the 
Babylonians were aware of what came to be called the ''Pythagorean theorem''--the sum 
of the squares of the sides of a right triangle is equal to the square of the hypotenuse. Like 
the Egyptians they computed the areas of triangles and trapeziums correctly. They 
computed the circumference and area of a circle using a value of π  = 3, which is much 
worse than the Egyptian approximation. The Babylonians calculated the volume of a 
truncated pyramid or cone by multiplying half of the sum of the areas of the bases by the 
height (an incorrect formula). 

 
¾¾A BIRD'S EYE VIEW OF ARITHMETIC 

THE SITUATIONS and representations in the human nervous system model the 
succession of states of the environment. Linguistic objects model the succession of 
situations and representations. As a result a theory is a ''two-story'' linguistic model of 
reality. 
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Figure 9.5.  Diagram of the use of a linguistic model of reality 

This diagram shows the use of a theory. The situation S1 is encoded by linguistic object 
L1. This object may, of course, consist of a set of other objects and may have a very 
highly complex structure. Object L1 is the name for S1. Sometime later situation S1 
changes into situation S2. A certain linguistic activity is performed and we convert L1 into 
another object L2; if our model is correct L2 is the name of S2. Then, without knowing the 
real situation S2, we can get an idea of it by decoding linguistic object L2. The linguistic 
model is plainly determined by both the semantics of objects L1 (the "material part'' 
according to Russian military terminology) and the type of linguistic activity which 
converts L1 into L2. 

Notice that we have not said anything about "isolating the essential aspects of the 
phenomenon," ''the cause-effect relation," or other such things which are usually set in 
places of honor when describing the essence of scientific modeling. And in our 
presentation, situation S1 does not "generate" situation S2 but only ''changes into'' it. Of 
course, this is no accident. The diagram we have drawn logically precedes the above-
mentioned philosophical concepts. If we have a linguistic model (and only to the extent 
that we do have one) we can talk about the essential aspect of a phenomenon, 
idealization, the cause-effect relation, and the like. Although they appear to be conditions 
for the creation of a linguistic model, all of these concepts are in fact nothing but 
description in general terms (although very important and necessary ones) of already 
existing models. Although these concepts appear to ''explain'' why a linguistic model can 
exist in general, in reality they are elements of a linguistic model of the next level of the 
control hierarchy and, of course, appear later in history than the primary linguistic models 
(for example arithmetic ones). Before using these concepts, therefore, we must ascertain 
that linguistic models exist in general. And on this level of description we need not add 
anything to the diagram shown in figure 9.5.  

But theories are created and developed by the trial and error method. If there is a starting 
point, then beginning from it a person tries to build linguistic constructions and test the 
results. The phases of building and testing are constantly alternating: construction gives 
rise to testing and testing gives rise to new constructions.  
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The starting point of arithmetic is the concept of the whole number. The aspect of reality 
this concept reflects is the following: the relation of the whole to its parts, the procedure 
for breaking the whole down into parts. The same thought can be expressed the other way 
around: a number is a procedure for joining parts into a whole, that is, into a certain set. 
Two numbers are considered identical if their parts (set elements) can be placed in a one-
to-one correspondence; establishing this correspondence is counting. It is obvious, 
however, that numbers are not enough for a theory; we must also have operations with 
them. These are the elements of the model's functioning, the conversions L1 → L2. Let us 
take two numbers n and m and represent them schematically as two modes of breaking a 
whole down into parts (figure 9.6 a). 

 

Figure 9.6.  Operations on whole numbers 

How can we from these two numbers obtain a third--that is, a third mode of breaking 
down the whole into parts? Two modes come to mind immediately. They can be called 
parallel and sequential joining of breakdowns. In the parallel mode both wholes form 
parts of a new whole (figure 9.6 b). This breakdown (number) we call the sum of the two 
numbers. With the sequential mode we take one of the breakdowns and break down each 
of its parts in accordance with the other breakdown (figure 9.6 c). The new number is 
called the product. It does not depend on the order of the generating numbers. This can be 
seen very well if we interpret the actions with the numbers not as joining breakdowns but 
as forming a new set. The sum is obviously the result of merging the two sets into one 
(their union). The prototype of the product is the set of combinations of any element of 
the first set with any element of the second (in mathematics such a set is called the direct 
product of sets). The connection between this definition and the preceding one can be 
traced as follows. Suppose the first breakdown divides whole number A into parts a1, a2, . 
. . , an  and the second divides B into parts b1, b2, . . . , bm . After performing the first 
breakdown we mark the parts obtained with the letters ai. Breaking down each part into 
parts bj we keep the first letter and add a second. This means that in each part of the result 
there will be an aj bj, and all these combinations will be different. The approaches from 
the whole to the part and from the part to the whole complement one another. It is also 
easy to see from figure 9.6 c that multiplication can be reduced to repeated addition.  

Of course the ancients who were creating arithmetic were far from this reasoning. But 
then again, the frog did not know that its nervous system had to be organized on the 
hierarchical principle either! What is important is that we know this. 
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Having linguistic objects that depict numbers and being able to perform addition and 
multiplication with them we receive a theory that gives us working models of reality. Let 
us figure a very simple example, which clarifies the diagram in figure 9.6. 

Suppose a certain farmer has planted wheat in a field 60 paces long and 25 paces wide. 
We shall assume that the farmer expects a yield of one bushel of wheat per square pace. 
Before beginning the harvest he wants to know how many bushels of wheat he will get. 
In this case S1 is the situation before the wheat harvest, specifically including the result of 
measuring the width and length of the field in paces and the expected yield; S2 is the 
situation after the harvest, specifically including the result of measuring the amount of 
wheat in bushels; L1 is the linguistic object 60 x 25 (the multiplication sign is a reflection 
of situation S1 just as the numbers 60 and 25 are; it reflects the structure of the set of 
square paces on the plane as a direct product of the sets of linear paces for length and 
width); S2 is the linguistic object 1,500.  

Note that by theory we mean simply a linguistic model of reality which gives something 
new in comparison with neuronal models. This definition does not take into account that 
theories may form a control hierarchy; this fact is difficult to reflect without introducing 
mathematical apparatus. More general models can generate more particular ones. We 
shall consider the terms theory and linguistic model to be synonymous, but nonetheless 
when we are speaking of one model generating another, we shall call the more general 
one a theory and the more particular one a model. 

 
¾¾REVERSE MOVEMENT IN A MODEL 

A THEORY THAT has just been created must first be tested comprehensively. It must be 
compared with experience and searched for flaws. If the theory is valid, an attempt must 
then be made to give the model ''reverse movement,'' to determine specific characteristics 
of L1 on the basis of a given L2. This procedure is by no means without practical 
importance. A person uses a model for planning purposeful activity and wants to know 
what he must do to obtain the required result--what L1 should be in order to obtain a 
given L2. In our example with the farmer, the question can be put as follows: given the 
width of a certain field, what should the length be to obtain a given amount of wheat? 

But studying the reverse movement of a model is not always dictated by practical needs 
of the moment. Often it is done for pure curiosity--to "see what happens.'' Nonetheless, 
the result of such activity will be a better understanding of the organization and 
characteristics of the model and the creation of new constructions and models which, in 
the last analysis, will lead to greatly enlarged practical usefulness. This is the supreme 
wisdom of nature, which gave human beings ''pure'' curiosity.  

In arithmetic the reverse movement of a model leads to the concept of the equation. The 
simplest equations generate the operations of subtraction and division. Using modern 
algebraic language. we define the difference b--a as the solution of the equation a + x = 
b-- in which x is the number that makes this equality true. The quotient from dividing b 
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by a is determined analogously. The operation of division generates a new construction: 
the fraction. Repeated multiplication of a number by itself generates the construction of 
exponential degree, and the reverse movement generates the operation of extracting the 
root. This completes the list of arithmetic constructions in use among the Ancient 
Egyptians and Babylonians. 

 
¾¾SOLVING EQUATIONS 

WITH THE DEVELOPMENT of techniques of computation, and with the development 
of civilization in general, increasingly complex equations began to appear and to be 
solved. The ancients, of course, did not know modern algebraic language. They expressed 
equations in ordinary conversational language as is done in our grammar school 
arithmetic textbooks. Nevertheless, their substance was not changed. The ancients (and 
today's school children) were solving equations.  

The Egyptians called the quantity subject to determination the akha which is translated as 
''certain quantity'' or ''bulk.'' Here is an example of the wording of a problem from an 
Egyptian papyrus: "A quantity and its fourth part together give 15.'' In modern 
mathematical terminology this is the problem of ''parts,'' and in algebraic language it 
corresponds to the equation x + 1/4 x = 15.  

Let us give an example of a more complex problem from Egyptian times. ''A square and 
another square whose side is 1/2 + 1/4 of a side of the first square together have an area 
of 100. Calculate this for me.'' The solution in modern notation is as follows: 

x2 + (3/4 x)2 = 100 

(1 + 9/16)x2 = 100 

5/4 x= 10 

x = 8, 3/4 x = 6 

Here is the description of the solution in a papyrus:  

"Take a square with side I and take 1/2 + 1/4 of 1, that is, 1/2 + 1/4, as the side of the 
second area. Multiply 1/2 + 1/4 by itself; this gives 1/2 + 1/l6. Because the side of the 
first area is taken as 1 and the second as 1/2 + 1/4, add both areas together; this gives 1 + 
1/2 + 1/16. Take the root from this: this will be 1 + 1/4. Take the root of the given 100: 
this will be 10. How many times does 1 +1/4 go into 10? It goes eight times.''  

The rest of the text has not been preserved, but the conclusion is obvious: 8 . 1 = 8 is the 
side of the first square and 8 . (1/2 + 1/ 4) = 6 is the second. 
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The Egyptians were able to solve only linear and very simple quadratic equations with 
one unknown. The Babylonians went much further. Here is an example of a problem 
from the Babylonian texts: 

''I added the areas of my two squares: 25 . 25/60. The side of the second square is 2/3 of 
the side of the first and five more." This is followed by a completely correct solution of 
the problem. This problem is equivalent to a system of equations with two unknowns: 

x2 + y2 = 25 . 25/60 

y = 2/3 x + 5 

The Babylonians were able to solve a full quadratic equation: 

x2 +- ax = b, 

cubic equations: 

x3 = a 

x2 (x + 1 ) = a 

and other systems of equations similar to those given above as well as ones of the type  

x +- y = a, Xy = b 

In addition to this they used formulas 

(a + b)2 = a2 + 2ab + b2 

(a + b)(a-b) = (a2 - b2) 

were able to sum arithmetic progressions, knew the sums of certain number series, and 
knew the numbers which later came to be called Pythagorian (such whole numbers x, y, 
and z that x2 + y2 = z2 ). 

 
¾¾THE FORMULA 

THE PLACE of Ancient Egypt and Babylon in the history of mathematics can be defined 
as follows: the formula first appeared in these cultures. By formula we mean not only the 
alphanumeric expression of modern algebraic language but in (general any linguistic 
object which is an exact (formal) prescription for how to make the conversion L1 → L2, 
or any auxiliary conversions within the framework of language. Formulas are a most 
important part of any elaborated theory although, of course, they do not exhaust it 
because a theory also includes the meanings of linguistic objects Li. The assertion that 
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there is a relation between the magnitudes of the sides in a right triangle, which is 
contained in the Pythagorian theorem, is a formula even though it is expressed by words 
rather than letters. A typical problem with a description of the process of solution ("Do it 
this way!") and with a note that the numbers may be arbitrary (this may not be expressed 
but rather assumed) is also a formula. It is precisely such formulas which have come 
down to us in the Egyptian papyruses and the Babylonian clay tablets.  

 

[1] See B. L. van der Waerden's book Ontwakende Wetenschap, in English: Science 
Awakening, New York: Oxford University Press, 1969). 

[2] van der Waerden, Science Awakening, p. 17. 

[3] This fragment has come down to us through Procul (fitth century B.C.), a 
commentator on Euclid.  
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CHAPTER TEN 
 

From Thales to Euclid 
 
¾¾PROOF 

NEITHER IN Egyptian nor in Babylonian texts do we find anything even remotely 
resembling mathematical proof. This concept was introduced by the Greeks, and is their 
greatest contribution. It is obvious that some kind of guiding considerations were 
employed earlier in obtaining new formulas. We have even cited an example of a grossly 
incorrect formula (for the area of irregular quadrangles among the Egyptians) which was 
plainly obtained from externally plausible ''general considerations.'' But only the Greeks 
began to give these guiding considerations the serious attention they deserved. The 
Greeks began to analyze them from the point of view of how convincing they were, and 
they introduced the principle according to which every proposition concerning 
mathematical formulas, with the exception of just a small number of "completely 
obvious'' basic truths, must be proved--derived from these ''perfectly obvious" truths in a 
convincing manner admitting of no doubt. It is not surprising that the Greeks, with their 
democratic social order, created the doctrine of mathematical proof. Disputes and proofs 
played an important part in the life of the citizens of the Greek city-state (polis). The 
concept of proof already existed; it was a socially significant reality. All that remained 
was to transfer it to the field of mathematics, which was done as soon as the Greeks 
became acquainted with the achievements of the ancient Eastern civilizations. It must be 
assumed that a certain part here was also played by the role of the Greeks as young, 
curious students in relation to the Egyptians and Babylonians, their old teachers who did 
not always agree with one another. In fact, the Babylonians determined the area of a 
circle according to the formula 3r2, while the Egyptians used the formula (8/9. 2r)2. 
Where was the truth? This was something to think about and debate.  

The creators of Egyptian and Babylonian mathematics have remained anonymous. The 
Greeks preserved the names of their wise men. The first, Thales of Miletus, is also the 
first name included in the history of science. Thales lived in the sixth century B.C. in the 
city of Miletus on the Asia Minor coast of the Aegean Sea. One date in his life has been 
firmly established: in 585 B.C. he predicted a solar eclipse--unquestionable evidence of 
Thales's familiarity with the culture of the ancient civilizations, because the experience of 
tens and hundreds of years is required to establish the periodicity of eclipses. Thales had 
no Greek predecessors, and could therefore only have taken his knowledge of astronomy 
from the scientists of the East. Thales, the Greeks assert, gave the world the first 
mathematical proofs. Among the propositions (theorems) proved by him they mention the 
following: 

1 The diameter divides a circle into two equal parts. 

2 The base angles of an isosceles triangle are equal.  

3 Two triangles which have an identical side and identical angles adjacent to it are equal. 
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In addition, Thales was the first to construct a circle circumscribed about a right triangle 
(and it is said that he sacrificed an ox in honor of this discovery).  

The very simple nature of these three theorems and their intuitive obviousness shows that 
Thales was entirely aware of the importance of proof as such. Plainly, these theorems 
were proved not because there was doubt about their truth but in order to make a 
beginning at systematically finding proof and developing a technique for proof. With 
such a purpose it is natural to begin by proving the simplest propositions. 

Suppose triangle ABC is isosceles, which is to say side AB is equal to side BC.  

 

Figure 10.1.  Isosceles triangle. 

Let us divide angle ABC into two equal parts by line BD. Let us mentally fold our 
drawing along line BD. Because angle ABD is equal to angle CBD, line BA will lie on 
line BC, and because the length of the segments AB and BC is equal, point A will lie on 
point C. Because point D remains in place, angles BCD and BAD must be equal. Whereas 
formerly it only seemed to us that angles BCD and BAD were equal (Thales probably 
spoke this way to his fellow citizens), we have now proved that these angles necessarily 
and with absolute precision must be equal (the Greeks said "similar'') to one another: that 
is, they match when one is placed on the other. 

The problem of construction is more complex and here the result is not at all obvious 
beforehand. Let us draw a right triangle. 
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Figure 10.2.  Construction of a circle described around a right triangle 

May a circle be drawn such that all three vertices of the triangle appear on it? And if so, 
how'? It is not clear. But suppose that intuition suggests a solution to us. We divide the 
hypotenuse BC into two equal segments at point D. We connect it with point A. If 
segment AD is equal in magnitude to segment DC (and therefore also to BD) we can 
easily draw the required circle by putting the point of a compass at point D and taking 
segment DC as the radius. But is it true that AD =DC, that is to say triangle ADC is an 
isosceles triangle? It is not clear. It seems probable, but in any case it is far from obvious. 
Now we shall take the crucial step. We shall add point E to our triangle, making rectangle 
ABEC and draw in a second diagonal AE. Suddenly it becomes obvious that triangle ADC 
is isosceles. Indeed, from the overall symmetry of the drawing it is clear that the 
diagonals are equal and intersect at the point which divides them in half--at point D. We 
have not yet arrived at proof, but we already are at that level of clarity where formal 
completion of the proof presents no difficulty. For example, relying on the equality of the 
opposite sides of the rectangle (which can be derived from even more obvious 
propositions if we wish), we complete the proof by the following reasoning: triangles 
ABC and AEC are equal because they have side AC in common, sides AB and EC are 
equal, and angles BAC and ECA are right angles; therefore angle EAC  is equal to angle 
BCA. That is, triangle ADC is an isosceles triangle, which is what had to be proved. 

 
¾¾THE CLASSICAL PERIOD 

SO, FROM a few additional points and lines on a drawing, a chain of logical reasoning, 
and simple and obvious truths we receive truths which are by no means simple and by no 
means obvious, but whose correctness no one can doubt for a minute. This is worth 
sacrificing an ox to the gods for! One can imagine the delight the Greeks experienced 
upon making such a discovery. They had struck a vein of gold and they diligently began 
working it. In the time of Pythagoras (550 B.C.) the study of mathematics was already 
very widespread among people who had leisure time and was considered a noble, 
honorable, and even sacred matter. Advances and discoveries, each more marvelous than 
the one before, poured from the horn of plenty. 
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The appearance of proof was a metasystem transition within language. The formula was 
no longer the apex of linguistic activity. A new class of linguistic objects appeared, proof, 
and there was a new type of linguistic activity directed to the study and production of 
formulas. This was a new stage in the control hierarchy and its appearance called forth 
enormous growth in the number of formulas (the law of branching of the penultimate 
level). 

The metasystem transition always means a qualitative leap forward--a flight to a new 
step, swift, explosive development. The mathematics of the countries of the Ancient East 
remained almost unchanged for up to two millennia, and a person of our day reads about 
it with the condescension of an adult toward a child. But in just one or two centuries the 
Greeks created all of the geometry our high school students sweat over today. Even more, 
for the present-day geometry curriculum covers only a part of the achievements of the 
initial, ''classical,'' period of development of Greek mathematics and culture (to 330 
B.C.). Here is a short chronicle of the mathematics of the classical period.  

585 B.C. Thales of Miletus. The first geometric theorems.  

550 B.C. Pythagoras and his followers. Theory of numbers. Doctrine of harmony. 
Construction of regular polyhedrons. Pythagorean theorem. Discovery of 
incommensurable line segments. Geometric algebra. Geometric construction equivalent 
to solving quadratic equations.  

500 B.C. Hippasas, Pythagorean who was forced to break with his comrades because he 
shared his knowledge and discoveries with outsiders (this was forbidden among the 
Pythagoreans). Specifically, he gave away the construction of a sphere circumscribed 
about a dodecahedron.  

430 B.C. Hippocrates of Chios (not to be confused with the famous doctor Hippocrates of 
Kos). He was considered the most famous geometer of his day. He studied squaring the 
circle, making complex geometric constructions. He knew the relationship between 
inscribed angles and arcs, the construction of a regular hexagon, and a generalization of 
the Pythagorean theorem for obtuse- and acute-angled triangles. Evidently, he considered 
all these things elementary truths. He could square any polygon, that is, construct a 
square of equal area for it.  

427-348 B.C. Plato. Although Plato himself did not obtain new mathematical results, he 
knew mathematics and it sometimes played an important part in his philosophy--just as 
his philosophy played an important part in mathematics. The major mathematicians of his 
time, such as Archytas, Theaetetus, Eudoxus, were Plato's friends; they were his students 
in the field of philosophy and his teachers in the field of mathematics.  

390 B.C. Archytas of Tarentum. Stereometric solution to the problem of doubling the 
cube--that is, constructing a cube with a volume equal to twice the volume of a given 
cube.  
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370 B.C. Eudoxus of Cnidus. Elegant, logically irreproachable theory of proportions 
closely approaching the modern theory of the real number. The ''exhaustion method,'' 
which forms the basis of the modern concept of the integral.  

384-322 B.C. Aristotle. He marked the beginning of logic and physics. Aristotle's works 
reveal a complete mastery of the mathematical method and a knowledge of mathematics, 
although he, like his teacher Plato, made no mathematical discoveries. Aristotle the 
philosopher is inconceivable without Aristotle the mathematician.  

300 B.C. Euclid. Euclid lived in a new and different age, the Alexandrian Epoch. In his 
famous Elements Euclid collected and systematized all the most important works on 
mathematics which existed at the end of the fourth century B.C. and presented them in 
the spirit of the Platonic school. For more than 2,000 years school courses in geometry 
have followed Euclid's Elements to some extent. 

 
¾¾PLATO'S PHILOSOPHY 

WHAT IS MATHEMATICS? What does this science deal with ? These questions were 
raised by the Greeks after they had begun to construct the edifice of mathematics on the 
basis of proofs, for the aura of absolute validity, of virtual sanctity, which mathematical 
knowledge acquired thanks to the existence of the proofs immediately made it stand out 
against the background of other everyday knowledge. The answer was given by the 
Platonic theory of ideas. This theory formed the basis of all Greek philosophy, defined 
the style and way of thinking of educated Greeks, and exerted an enormous influence on 
the subsequent development of philosophy and science in the Greco-Roman-European 
culture. 

It is not difficult to establish the logic which led Plato to his theory. What does 
mathematics talk about'? About points, lines, right triangles, and the like. But are there in 
nature points which do not have dimensions? Or absolutely straight and infinitely fine 
lines? Or exactly equal line segments, angles, or areas? It is plain that there are not. So 
mathematics studies nonexistent, imagined things; it is a science about nothing. But this 
is completely unacceptable. In the first place, mathematics has unquestionably produced 
practical benefits. Of course, Plato and his followers despised practical affairs, but this 
was a logical result of philosophy, not a premise. In the second place, any person who 
studies mathematics senses very clearly that he is dealing with reality, not with fiction, 
and this sensation cannot be rooted out by any logical arguments. Therefore, the objects 
of mathematics really exist but not as material objects, rather as images or ideas, because 
in Greek the word "idea" in fact meant "image'' or "form.''[1] Ideas exist outside the 
world of material things and independent of it. Material things perceived by the senses 
are only incomplete and temporary copies (or shadows) of perfect and eternal ideas. The 
assertion of the real, objective existence of a world of ideas is the essence of Plato's 
teaching (''Platonism'').  
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For many centuries hopelessly irresolvable disputes arose among the Platonists over 
attempts to in some way give concrete form to the notion of the world of ideas and its 
interaction with the material world. Plato himself wisely remained invulnerable, avoiding 
specific, concrete terms and using a metaphorical and poetic language. But he did have to 
enter a polemic with his student Eudoxus, who not only proved mathematical theorems 
but also defended trading in olive oil. Such a position of course restricted the influx of 
new problems and ideas and fostered a canonization and regimentation of scientific 
thought, thus retarding its development. But beyond this, Platonism also had a more 
concrete negative effect on mathematics. It prevented the Greeks from creating algebraic 
language. This could be done only by the less educated and more practical Europeans. 
Later on we shall consider in more detail the history of the creation of modern algebraic 
language and the inhibiting role of Platonism, but first we shall discuss the answers given 
by modern science to the questions posed in Platonic times and how the answers given by 
Plato look in historical retrospect. 

 
¾¾WHAT IS MATHEMATICS? 

FOR US MATHEMATICS is above all a language that makes it possible to create a 
certain kind of models of reality: mathematical models. As in any other language (or 
branch of language) the linguistic objects of mathematics, mathematical objects, are 
material objects that fix definite functional units, mathematical concepts. When we say 
that the objects ''fix functional units'' we take this to mean that a person, using the 
discriminating capabilities of his brain, performs certain linguistic actions on these 
objects or in relation to them. It is plain that it is not the concrete form (shape, weight, 
smell) of the mathematical object which is important in mathematics; it is the linguistic 
activity related to it. Therefore the terms ''mathematical object'' and ''mathematical 
concept'' are often used as synonyms. Linguistic activity in mathematics naturally breaks 
into two parts: the establishment of a relationship between mathematical objects and 
nonlinguistic reality (this activity defines the meanings of mathematical concepts), and 
the formulations of conversions within the language, mathematical calculations and 
proofs. Often only the second part is what we call ''mathematics'' while we consider the 
first as the ''application of mathematics.'' 

Points, lines, right triangles, and the like are all mathematical objects. They make up our 
geometric drawings or stereometric models: spots of color, balls of modeling clay, wires, 
pieces of cardboard, and the like. The meanings of these objects are known. The point, 
for example, is an object whose dimensions and shape may be neglected. Thus the ''point'' 
is simply an abstract concept which characterizes the relation of an object to its 
surroundings. In some cases we view our planet as a point. But when we construct a 
geometric model we usually make a small spot of color on the paper and say, ''Let point A 
be given.'' This spot of color is in fact linguistic object Li, and the planet Earth may be the 
corresponding object (referent) Rj. There are no other true or ideal'' points, that is, without 
dimensions. It is often said that there are no ''true'' points in nature, but that they exist 
only in our imagination. This commonplace statement is either absolutely meaningless or 
false, depending on how it is interpreted. In any case it is harmful, because it obscures the 
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essence of the matter. There are no "true'' points in our imagination and there cannot be 
any. When we say that we are picturing a point we are simply picturing a very small 
object. Only that which can be made up of the data of sensory experience can be 
imagined, and by no means all of that. The number 1,000 for example, cannot be 
imagined. Large numbers, ideal points, and lines exist not in our imagination, but in our 
language, as linguistic objects we handle in a certain way. The rules for handling them 
reveal the essence of mathematical concepts, specifically the ''ideality of the point.'' The 
dimensions of points on a drawing do not influence the development of the proof, and if 
two points must be set so close that they merge into one, we can increase the scale. 

But aren't the assertions of mathematics characterized by absolute precision and 
correctness which differs sharply from the content of empirical knowledge -- which is 
primarily approximate and hypothetical?  We can find by measurements that two 
segments are approximately equal, but never that they are exactly equal; such assertions 
are the privilege of mathematics.  On the basis of long centuries of human experience we 
can predict every evening that the sun will rise again the next morning.  But this 
prediction is nothing more than a hypothesis, although an extremely probable one.  It is 
not impossible tat somewhere in the interior of the sun or outside it a cosmic catastrophe 
of unknown nature is coming to a head which will cause the sun to go out or break into 
parts.  But when we say that adding two and two will give four or that the equation x2 = 2 
has no rational solutions, we are convinced that these predictions are absolutely correct 
and will be true always and everywhere, even if the sun and the entire galaxy as well 
break into little pieces.  We simply cannot imagine that it could be otherwise.  
Consequently, there is a difference between mathematical models of reality and other 
models which are made up of the content of our everyday experience of the natural 
sciences.  What is the nature of this difference?     

 

¾PRECISION IN COMPARING QUANTITIES 

IT IS EASY to see that the absolute precision in comparing measurable objects in 
mathematics and the absolute definiteness of mathematical assertions are simply results 
of the fact that mathematical language is a discrete cybernetic system.  But is it really 
discrete?  There is no doubt with respect to arithmetic, algebra, and in general the 
language of symbols.  If the top part of the numeral two is enlarged or decreased in size it 
will not become 2.01 or 1.99.  A text consisting of N symbols is a cybernetic system of N 
subsystems, each of which can be pictured as a cell containing a symbol.  Suppose that 
the full number of different symbols is n; then each subsystem may be in one of n states.  
But geometric language, the language of figures, seems at first glance to be a continuous 
system.  Lines on a drawing may have arbitrary length, form arbitrary angles and so on.  
Nonetheless, in action  geometric language proves to be a discrete system.  The details of 
a geometric drawing, such as the values of the lengths of segments and the magnitudes of 
the angles, play no part in the development of the proof or in decoding the drawing.  The 
only essential things are such characteristics of the drawing as whether two given straight 
lines intersect, whether a given straight line passes through a given point, whether a given 
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point lies at the intersection of a given straight line and a given circle, and so on.   All of 
this information may be coded in text using some special system of designations or 
simply in the Russian or English language.  The language of geometry can be compared 
with the language of chess-playing.  The chess pieces never occupy the exact centers of 
the squares of the board and they may even protrude in part outside their own square, but 
this has no effect at all on the moves the pieces can make.    

Assertions of the absolutely exact equality of segments, angles, and the like are simply 
certain states of the “geometric language” system.  Because this system is discrete and 
deterministic, on the condition that the rules of logical deduction are observed, if it 
follows from the conditions of the problem that AB = BC, we shall invariably receive this 
result, no matter how many times we repeat the proof (it is assumed, of course, that the 
system of axioms is noncontradictory; in mathematics only such systems have a right to 
exist).  Because the condition of the problem is already formatted in geometric language, 
the entire path from the condition to the result is a syntactical conversion L1→ L2 within a 
discrete linguistic system. The assertions of empirical language have an entirely different 
status. By itself this language is, of course, discrete also, but empirical assertions reflect 
semantic conversions L1→ S1 leading us into the area of nonlinguistic activity which is 
neither discrete nor deterministic. When we say that two rods have equal length this 
means that every time we measure them the result will be the same. Experience, however, 
teaches us that if we can increase the precision of measurement without restriction, 
sooner or later we shall certainly obtain different values for the length, because an 
empirical assertion of absolutely exact equality is completely senseless. Other assertions 
of empirical language which have meaning and can be expressed in the language of 
predicate calculus, for example ''rod no. 1 is smaller than rod no. 2," possess the same 
''absolute precision'' (which is a trivial consequence of the discrete nature of the 
language) as mathematical assertions of the equality of segments. This assertion is either 
''exactly'' true or "exactly'' false. Because of variations in the measuring process, 
however, neither is absolutely reliable. 

 
¾¾THE RELIABILITY OF MATHEMATICAL ASSERTIONS 

NOW LET US DISCUSS the reliability of mathematical assertions. Plato deduced it 
from the ideal nature of the object of mathematics, from the fact that mathematics does 
not rely on the illusory and changing data of sensory experience. According to the 
mathematician, drawings and symbols are nothing but a subsidiary means for 
mathematics; the real objects Plato deals with are contained in his imagination and 
represent the result of perception of the world of ideas through reason, just as sensory 
experience is the result of perception of the material world through the sense organs. 
Imagination obviously plays a crucial part in the work of the mathematician (as it does, 
we might note, in all other areas of creative activity). But it is not entirely correct to say 
that mathematical objects are contained in the imagination: basically they are still 
contained in drawings and texts, and the imagination takes them up only in small parts. 
Rather than holding mathematical objects in our imagination we pass them through and 
the characteristics of our imagination determine the functioning of mathematical 
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language. As for the source which determines the content of our imagination, here we 
disagree fundamentally with Plato. The source is the same sensory experience used in the 
empirical sciences. Therefore, even though it uses the mediation of imagination, 
mathematics creates models of the very same. unique (as far as we know) world we live 
in. 

However, although they constructed a stunningly beautiful edifice of logically strict 
proofs, the Greek mathematicians nonetheless left a number of gaps in the structure; and 
these gaps, as we have already noticed, lie on the lowest stories of the edifice--in the area 
of definitions and the most elementary properties of the geometric figures. And this is 
evidence of a veiled reference to the sensory experience so despised by the Platonists. 
The mathematics of Plato's times provides even clearer material than does present-day 
mathematics to refute the thesis that mathematics is independent of experience.  

The first statement proved in Euclid's first book contains a method of constructing an 
equilateral triangle according to a given side. The method is as follows.  

 

Figure 10.3.  Construction of an equilateral triangle. 

Suppose AB is the given side of the triangle. Taking point A as the center we describe 
circle πA with radius AB. We describe a similar circle (πB) from point B. We use C to 
designate either of the points of intersection of these circles. Triangle ABC is equilateral, 
for AC = CB = AB.  

There is a logical hole in this reasoning: how does it follow that the circles constructed by 
us will intersect at all'? This is a question fraught with complications, for the fact that 
point of intersection C exists cannot be related either to the attributes of a circle or even 
to the attributes of a pair of circles (for they by no means always intersect). We are 
dealing here with a more specific characteristic of the given situation. Euclid probably 
sensed the existence of a hole here, but he could not find anything to plug it with. 

But how are we certain that circles πA and πB intersect? In the last analysis, needless to 
say, we know from experience. From experience in contemplating and drawing straight 



  

 180

lines, circles, and lines in general, from unsuccessful attempts to draw circles πA and πB 
so that they do not intersect. 

So Plato's view that the mathematics of his day was entirely independent of experience 
cannot be considered sound. But the question of the nature of mathematical reliability 
requires further investigation, for to simply make reference to experience and thus equate 
mathematical reliability with empirical reliability would mean to rush to the opposite 
extreme from Platonism. Certainly, we feel clearly that mathematical reliability is 
somehow different from empirical reliability, but how'? 

The assertion that circles of radius AB with centers of A and B intersect (for brevity we 
shall designate this assertion E1) seems to us almost if not completely reliable; we simply 
cannot imagine that they would not intersect. We cannot imagine.... This is how 
mathematical reliability differs from the empirical! When we are talking about the sun 
rising tomorrow, we can imagine that the sun will not rise and it is only on the basis of 
experience that we believe that it probably will rise. Here there are two possibilities and 
the prediction as to which one will happen is probabilistic. But when we say that two 
times two is four and that circles constructed as indicated above intersect we cannot 
imagine that it could be otherwise. We see no other possibility, and therefore these 
assertions are perceived as absolutely reliable and independent of concrete facts we have 
observed. 

 
¾¾IN SEARCH OF AXIOMS 

IT IS VERY INSTRUCTIVE for an understanding of the nature of mathematical 
reliability to carry our analysis of the assertion E1 through to the end. Because we still 
have certain doubts that the circles in figure 10.3 necessarily intersect, let us attempt to 
picture a situation where they do not. If this attempt fails completely it will mean that 
assertion E1 is mathematically reliable and cannot be broken down into simpler 
assertions: then it should be adopted as an axiom. But if through greater or lesser effort of 
imagination we are able to picture a situation in which [pi]A and [pi]B do not intersect, it 
must be expected that this situation contradicts some simpler and deeper assertions which 
do possess mathematical reliability. Then we shall adopt them as axioms and the 
existence of the contradiction will serve as proof of E1. This is the usual way to establish 
axioms in mathematics.  

First let us draw circle πA. Then we shall put the point of the compass at point B and the 
writing element at point A and begin to draw circle πB. We shall move from the center of 
circle πA toward its periphery and at a certain moment (this is how we picture it in our 
imagination) we must either intersect circle πA or somehow skip over it, thus breaking 
circle πB.  
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Figure 10.4. 

But we imagine circle πB as a continuous line and it becomes clear to us that the 
attributes of continuousness, which are more fundamental and general than the other 
features of this problem, lie at the basis of our confidence that circles πA and πB will 
intersect. Therefore we set as our goal proving assertion E1 beginning with the attributes 
of continuousness of the circle. For this we shall need certain considerations related to the 
order of placement of points on a straight line. We include the concepts of 
continuousness and order among the basic, undefined concepts of geometry, like the 
concepts of the point, the straight line, or distance. 

Here is one possible way to our goal. We introduce the concept of ''inside'' (applicable to 
a circle) by means of the following definition: 

D1: It is said that point A lies inside circle π  if it does not lie on π and any straight line 
passing through point A intersects π  at two points in such a way that point A lies between 
the points of intersection. If the point is neither on nor inside the circle it is said that it lies 
outside the circle. 

The concept of ''between'' characterizes the order of placement of three points on a 
straight line. It may be adopted as basic and expressed, through the more general concept 
of ''order,'' by the following definition: 

D2: It is said that point A is located between points B1 and B2 if these three points are set 
on one straight line and during movement along this line they are encountered in the 
order B1, A, and B2 or B2, A, and B1.  

We shall adopt the following propositions as axioms: 

A1: The center of a circle lies inside it. 

A2: The arc of a circle connecting any two points of the circle is continuous. 

A3: If point A lies inside circle π and point B is outside it, and these two points are joined 
by a continuous line, then there is a point where this line intersects the circle.  
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Relying on these axioms, let us begin with the proof. According to the statement of the 
problem, circle πB passes through center A of circle πA. If we have confidence that there 
is at least one point of circle πB that does not lie inside πA we shall prove E1. Indeed, if it 
lies on πA then E1 has been proved. If it lies outside πA then the arc of circle πB connects 
it with the center, that is, with an inside point of circle πA. Therefore, according to axioms 
A2 and A3 there is a point of intersection of πB and πA.  

But can we be confident that there is a point on circle πB which is outside πA? Let us try 
to imagine the opposite case. It is shown in figure 10.5.  

 

Figure 10.5. 

This is the second attempt to imagine a situation which contradicts the assertion being 
proved. Whereas the first attempt immediately came into explicit contradiction with the 
continuousness of a circle, the second is more successful. Indeed, stretching things a bit 
we can picture this case. We take a compass, put its point at point B and the pencil at 
point A. We begin to draw the circle without taking the pencil from the paper and when 
the pencil returns to the starting point of the line we remove it and see that we have figure 
10.5. And why not?  

To prove that this is impossible we must prove that in this case the center of circle [πB is 
necessarily outside it. We shall be helped in this by the following theorem:  

T1: If circle π1, lies entirely inside circle π2 then every inside point of circle π1 is also an 
inside point of circle π2.  

To prove this we shall take an arbitrary inside point A of circle π1, which is shown in 
figure 10.6.  
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Figure 10.6. 

We draw a straight line through it. According to definition D1 it intersects π1, at two 
points: B1 and B2 Because B1 (just as B2) lies inside π2 this straight line also intersects π2 
at two points: C1 and C2. We have received five points on a straight line and they are 
connected by the following relationships of order: A lies between B1 and B2; B1 and B2 lie 
between C1 and C2. That point A proves to be between points C1 and C2 in this situation 
seems so obvious to us that we shall boldly formulate it as still another axiom. 

A3: If points B1 and B2 on a straight line both lie between C1 and C2, then any point A 
lying between B1 and B2 also lies between C1 and C2. 

Because we can take any point inside π1 as A and we can draw any straight line through 
it, theorem T1 is proven. 

Now it is easy to complete the proof of E1. If circle πB lies entirely inside πA then 
according to theorem T1 its center B must also lie inside πA. But according to the 
statement of the problem point B is located on πA. Therefore πB contains at least one point 
which is not inside in relation to πA. 

So to prove one assertion E1 we needed four assertions (axioms A1-A4), but then these 
assertions express very fundamental and general models of reality related to the concepts 
of continuousness and order and we cannot even imagine that they are false. The only 
question that can be raised refers to axiom A1 which links the concept of center, which is 
metrical (that is, including the concept of measurement) in nature, with the concept of 
''inside," which relies exclusively on the concepts of continuousness and order. It may be 
desired that this connection be made using simpler geometric objects, under conditions 
which are easier for the functioning of imagination. This desire is easily met. For axiom 
A1 let us substitute the following axiom: 

A1 :́ if on a straight line point A and a certain distance (segment) R are given, then there 
are exactly two points on the straight line which are set at distance R from point A, and 
point A lies between these two points. 
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Relying on this axiom we shall prove assertion A1 as a theorem. We shall draw an 
arbitrary straight line through the center of the circle. According to axiom A1  ́ there will 
be two points on it which are set at distance R (radius of the circle) from the center. 
Because a circle is defined as the set of all points which are located at distance R from the 
center, these points belong to the circle. According to axiom A1  ́ the center point lies 
between them and therefore, according to definition D1, it is an inside point. In this way 
axiom A1 has been reduced to axiom A1 .́ Now try to imagine a point on a straight line 
which does not have two points set on different sides from it at the given distance! 

 
¾¾CONCERNING THE AXIOMS OF ARITHMETIC AND 
LOGIC 

THE PRIMARY PROPOSITIONS of arithmetic in principle possess the same nature as 
the primary propositions of geometry, but they are perhaps even simpler and more 
obvious and denial of them is even more inconceivable than denial of geometric axioms. 
As an example let us take the axiom which says that for any number  

a + 0 = a 

The number O depicts an empty set. Can you imagine that the number of elements in 
some certain set would change if it were united with an empty set? Here is another 
arithmetic axiom: for any numbers a and b 

a + (b + 1) = (a + b) + 1,  

that is, if we increase the number b by one and add the result to a, we shall obtain the 
same number as if we were to add a and b first and then increase the result by one. If we 
analyze why we are unable to imagine a situation that contradicts this assertion, we shall 
see that it is a matter of the same considerations of continuousness that also manifest 
themselves in geometric axioms. In the process of counting, it is as if we draw continuous 
lines connecting the objects being counted with the elements of a standard set and, of 
course, lines in time (let us recall the origin of the concept ''object'') whose 
continuousness ensures that the number is identical to itself. 

Natural auditory language transferred to paper gives rise to linear language, that is, a 
system whose subsystems are all linear sequences of signs. Signs are objects concerning 
which it is assumed only that we are able to distinguish identical ones from different 
ones. The linearity of natural languages is a result of the fact that auditory language 
unfolds in time and the relation of following in time can be modeled easily by the relation 
of order of placement on a timeline. The specialization of natural language led to the 
creation of the linear, symbolic mathematical language which now forms the basis of 
mathematics.  

Operating within the framework of linear symbolic languages we are constantly taking 
advantage of certain other attributes which seem so obvious and self-evident that we don't 
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even want to formulate them in the form of axioms. As an example let us take this 
assertion: if symbol a is written to the left of symbol b and symbol c is written on the 
right the same word (sequence of characters) will be received as when b is written to the 
right of a and followed by c. This assertion and others like it possess mathematical 
reliability for we cannot imagine that it would be otherwise. One of the fields of modern 
mathematics, the theory of semi-groups, studies the properties of linear symbolic systems 
from an axiomatic point of view and declares the simplest of these properties to be 
axioms.  

All three kinds of axioms, geometric, arithmetic, and linear-symbolic, possess the same 
nature and in actuality rely on the same fundamental concepts. concepts such as identity, 
motion, continuousness, and order. There is no difference in principle among these 
groups of axioms. And if one term were to be selected for them they should be called 
geometric or geometric-kinematic because they all reflect the attributes of our space-time 
experience and space-time imagination. The only more or less significant difference 
which can be found is in the group of "properly geometric'' axioms; some of the axioms 
concerning straight lines and planes reflect more specific experience related to the 
existence of solid bodies. The same thing evidently applies to metric concepts. But this 
difference too is quite arbitrary. Can we say anything serious about those concepts which 
we would have if there were no solid bodies in the world?  

Thus far we have been discussing the absolute reliability of axioms. But where do we get 
our confidence in the reliability of assertions obtained by logical deduction from axioms? 
From the same source, our imagination refuses to permit a situation in which by logical 
deduction we obtain incorrect results from correct premises. Logical deduction consists 
of successive steps. At each step, relying on the preceding proposition, we obtain a new 
one. From a review of formal logical deduction (chapter 11) it will be seen that our 
confidence that at every step we can only receive a true proposition from higher true 
propositions is based on logical axioms [2] which seem to us just as reliable as the 
mathematical axioms considered above. And this is for the same reason, that the opposite 
situation is absolutely inconceivable. Having this confidence we acquire confidence that 
no matter how many steps a logical deduction may contain it will still possess this 
attribute. Here we are using the following very important axiom:  

The axiom of induction : Let us suppose that function f (x) leaves attribute P (x) 
unchanged, that is 

(∀∀x){P (x) ⊃P [f (x)]} 

We will use f n(x) to signify the result of sequential n-time application of function f (x), 
that is 

f 1(x) =f (x), f n(x) = f [fn -1 (x)]. 

Then f n(x) will also leave attribute P (x) unchanged for any n, that is  
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(∀∀)(∀∀  x){P (x) => P [f n(x)]} 

By their origin and nature logical axioms and the axiom of induction (which is classed 
with arithmetic because it includes the concept of number) do not differ in any way from 
the other axioms; they are all mathematical axioms. The only difference is in how they 
are used. When mathematical axioms are applied to mathematical assertions they become 
elements of a metasystem within the framework of a system of mathematically reliable 
assertions and we call them logical axioms. Thanks to this, the system of mathematically 
reliable assertions becomes capable of development. The great discovery of the Greeks 
was that it is possible to add one certainty to another certainty and thus obtain a new 
certainty. 

 
DEEP-SEATED PILINGS 

THE DESCRIPTION of mathematical axioms as models of reality which are true not 
only in the sphere of real experience but also in the sphere of imagination relies on their 
subjective perception. Can it be given a more objective characterization? 

Imagination emerges in a certain stage of development of the nervous system as arbitrary 
associating of representations. The preceding stage was the stage of nonarbitrary 
associating (the level of the dog). It is natural to assume that the transition from 
nonarbitrary to arbitrary associating did not produce a fundamental change in the material 
at the disposal of the associating system, that is, in the representations which form the 
associations. This follows from the hierarchical principle of the organization and 
development of the nervous system in which the superstructure of the top layers has a 
weak influence on the lower ones And it follows from the same principle that m the 
process of the preceding transition, from fixed concepts to nonarbitrary associating, the 
lowest levels of the system of concepts remained unchanged and conditioned those 
universal, deep-seated properties of representations that were present before associating 
and that associating could not change. Imagination cannot change them either. These 
properties are invariant in relation to the transformations made by imagination. And they 
are what mathematical axioms rely on.  

If we picture the activity of the imagination as shuffling and fixing certain elements, 
''pieces'' of sensory perception, then axioms are models which are true for any piece and. 
therefore, for any combination of them. The ability of the imagination to break sensory 
experience up into pieces is not unlimited; emerging at a certain stage of development it 
takes the already existing system of concepts as its background, as a foundation not 
subject to modification. Such profound concepts as motion, identity, and continuousness 
were part of this background and therefore the models which rely on these concepts are 
universally true not only for real experience but also for any construction the imagination 
is capable of creating.  

Mathematics forms the frame of the edifice of natural sciences. Its axioms are the support 
piles that drive deep into the neuronal concepts, below the level where imagination 
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begins to rule. This is the reason for the stability of foundation which distinguishes 
mathematics from empirical knowledge. Mathematics ignores the superficial associations 
which make up our everyday experience, preferring to continue constructing the skeleton 
of the system of concepts which was begun by nature and set at the lowest levels of the 
hierarchy. And this is the skeleton on which the "noncompulsory'' models we class with 
the natural sciences will form, just as the ''noncompulsory'' associations of representations 
which make up the content of everyday experience form on the basis of inborn and 
"compulsory" concepts of the lowest level. The requirements dictated by mathematics are 
compulsory: when we are constructing models of reality we cannot bypass them even if 
we want to. Therefore we always refer the possible falsehood of a theory beyond the 
sphere of mathematics. If a discrepancy is found between the theory and the experiment it 
is the external, "noncompulsory" part of the theory that is changed but no one would ever 
think of expressing the assumption that, in such a case, the equality 2 + 2 = 4 has proved 
untrue. 

The ''compulsory" character of classical mathematical models does not contradict the 
appearance of mathematical and physical theories which at first glance conflict with our 
space-time intuition (for example, non-Euclidian geometry or quantum mechanics). 
These theories are linguistic models of reality whose usefulness is seen not in the sphere 
of everyday experience but in highly specialized situations. They do not destroy and 
replace the classical models; they continue them. Quantum mechanics, for example, relies 
on classical mechanics. And what theory can get along without arithmetic? The 
paradoxes and contradictions arise when we forget that the concept constructs which are 
included in a new theory are new concepts, even when they are given old names. We 
speak of a ''straight line'' in non-Euclidian geometry and call an electron a ''particle'' 
although the linguistic activity related to these words (proof of theorems and quantum 
mechanics computations) is not at all identical to that for the former theories from which 
the terms were borrowed. If two times two is not four then either two is not two, times is 
not times, or four is not four.  

The special role of mathematics in the process of cognition can be expressed in the form 
of an assertion, that mathematical concepts and axioms are not the result of cognition of 
reality, rather they are a condition and form of cognition. This idea was elaborated by 
Kant and we may agree with it if we consider the human being to be entirely given and 
do not ask why these conditions and forms of cognition are characteristic of the human 
being. But when we have asked this question we must reach the conclusion that they 
themselves are models of reality developed in the process of evolution (which, in one of 
its important aspects, is simply the process of cognition of the world by living structures). 
From the point of view of the laws of nature there is no fundamental difference between 
mathematical and empirical models; this distinction reflects only the existence in 
organization of the human mind of a certain border line which separates inborn models 
from acquired ones. The position of this line, one must suppose, contains an element of 
historical accident. If it had originated at another level, perhaps we would not be able to 
imagine that the sun may tail to rise or that human beings could soar above the earth in 
defiance or gravity. 
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¾¾PLATONISM IN RETROSPECT 

PLATO'S IDEALISM was the result of a sort of projection of the elements of language 
onto reality. Plato's ''ideas'' have the same origin as the spirits in primitive thinking; they 
are the imagined of really existing names. In the first stages of the development of critical 
thinking the nature of abstraction in the interrelationship of linguistic objects and non-
linguistic activity is not yet correctly understood. The primitive name-meaning unit is 
still pressing on people an idea of a one-to-one correspondence between names and their 
meanings. For words that refer to concrete objects the one-to-one correspondence seems 
to occur because we picture the object as some one thing. But what will happen with 
general concepts (universals)? In the sphere of the concrete there is no place at all for 
their meanings; everything has been taken up by unique' concepts, for a label with a name 
can be attached to each object. The empty place that form is filled by the "idea." Let us 
emphasize that Plato's idealism is far from including an assertion of the primacy of the 
spiritual over the material, which is to say it is not spiritualism (this term, which is widely 
used in Western literature, is little used in our country and is often replaced by the term 
"idealism,'' which leads to inaccuracy). According to Plato spiritual experience is just as 
empirical as sensory experience and it has no relation to the world of ideas. Plato's 
''ideas'' are pure specters, and they are specters born of sensory, not spiritual, experience.  

From a modern cybernetic point of view only a strictly defined, unique situation can be 
considered a unique concept. This requires an indication of the state of all receptors that 
form the input of the nervous system. It is obvious that subjectively we are totally 
unaware of concepts that are unique in this sense. Situations that are merely similar 
become indistinguishable somewhere in the very early stages of information processing 
and the representations with which our consciousness is dealing are generalized states, 
that is to say, general, or abstract, concepts (sets of situations). The concepts of definite 
objects which traditional logic naively takes for the primary elements of sensory 
experience and calls ''unique" concepts are in reality, as was shown above, very complex 
constructions which require analysis of the moving picture of situations and which rely 
on more elementary abstract concepts such as continuousness, shape, color, or spatial 
relations. And the more ''specific'' a concept is from the logical point of view, the more 
complex it will be from the cybernetic point of view. Thus, a specific cat differs from the 
abstract cat in that a longer moving picture of situations is required to give meaning to the 
first concept than to the second. Strictly speaking the film may even be endless, for when 
we have a specific cat in mind we have in mind not only its ''personal file'' which has 
been kept since its birth, but also its entire genealogy. There is no fundamental difference 
in the nature of concrete and abstract concepts; they both reflect characteristics of the real 
world. If there is a difference, it is the opposite of what traditional logic discerns: 
abstract, general concepts of sensory and spiritual experience (which should not be 
confused with mathematical constructs) are simpler and closer to nature than concrete 
concepts which refer to the definite objects. Logicians were confused by the fact that 
concrete concepts appeared in language earlier than abstract ones did. But this is evidence 
of their relatively higher position in the hierarchy of neuronal concepts, thanks to which 
they emerged at the point of connection with linguistic concepts.  
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The Platonic theory of ideas, postulating a contrived, ideal existence of generalized 
objects, puts one-place predicates (attributes) in a position separate from multiplace 
predicates (relations). This theory assigned attributes the status of true existence but 
denied it to relations, which became perfectly evident in Aristotle's loci. The concrete, 
visual orientation and static quality in thinking which were so characteristic of the Greeks 
in the classical period came from this. In the next chapter we shall see how this way of 
thinking was reflected in the development of mathematics.  

 

[1] The resemblance in sound between the Greek idea and the Russian vid is not 
accidental; they come from a common Indo-European root. (Compare also Latin "vidi" - 
past tense of "to see.") 

[2] For those who are familiar with mathematical logic let us note that this is in the broad 
sense, including the rules of inference.  
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CHAPTER ELEVEN 
 

From Euclid to Descartes 
 
¾¾NUMBER AND QUANTITY 

DURING THE TIME of Pythagoras and the early Pythagoreans, the concept of number 
occupied the dominant place in Greek mathematics. The Pythagoreans believed that God 
had made numbers the basis of the world order. God is unity and the world is plurality. 
The divine harmony in the organization of the cosmos is seen in the form of numerical 
relationships. A substantial part in this conviction was played by the Pythagoreans 
discovery of the fact that combinations of sounds which are pleasant to hear are created 
in the cases where a string is shortened by the ratios formed by whole numbers such as 
1:2 (octave), 2:3 (fifth), 3:4 (fourth), and so on. The numerical mysticism of the 
Pythagoreans reflected their belief in the fact that, in the last analysis, all the uniformities 
of natural phenomena derive from the properties of whole numbers. 

We see here an instance of the human inclination to overestimate new discoveries. The 
physicists of the late nineteenth century, like the Pythagoreans, believed that they had a 
universal key to all the phenomena of nature and with proper effort would be able to use 
this key to reveal the secret of any phenomenon. This key was the notion that space was 
filled by particles and fields governed by the equations of Newton and Maxwell. With the 
discovery of radioactivity and the diffraction of electrons, however, the physicists' 
arrogant posture crumbled. 

In the case of the Pythagoreans the same function was performed by discovery of the 
existence of incommensurable line segments, that is, segments such that the ratio of their 
lengths is not expressed by any ratio of whole numbers (rational number). The side of a 
square, and its diagonal are incommensurable, for example. It is easy to prove this 
statement using the Pythagorean theorem. In fact, let us suppose the opposite, namely that 
the diagonal of a square stands in some ratio m:n to its side. If the numbers m and n have 
common factors they can be reduced, so we shall consider that m and n do not have 
common factors. This means that in measuring length by some unitary segment, the 
length of the side is n and the length of the diagonal is m. It follows from the Pythagorean 
theorem that the equality m2= 2n2 must occur. Therefore, m2 must be divisible by 2, an 
consequently 2 must be among the factors of m, that is, m = 2m1. Making this substitution 
we obtain 4m1

2 = 2n2 , that is, 2m1
2 = n2 . This means that n also must be divisible by 2, 

which contradicts the assumption that m and n do not have common factors. Aristotle 
often refers to this proof. It is believed that the proof had already been discovered by the 
Pythagoreans.  

If there are quantities which for a given scale are not expressed by numbers then the 
number can no longer be considered the foundation of foundations; it is removed from its 
pedestal. Mathematicians then must use the more general concept of geometric quantity 
and study the relations among quantities that may (although only occasionally) be 
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expressed in a ratio of whole numbers. This approach lies at the foundation of all Greek 
mathematics beginning with the classical period. The relations we know as algebraic 
equalities were known to the Greeks in geometric formulation as relations among lengths, 
areas, and volumes of figures constructed in a definite manner. 

 
¾¾GEOMETRIC ALGEBRA 

FIGURE 11.1 shows the well-known geometric interpretation of the relationship            
(a +b)2 = a2+2ab+b2.  

 

Figure 11.1.  Geometric interpretation of the identity (a + b)2 = a2+2ab+b2. 

The equality (a+b)(a-b) = a2 - b2, which is equally commonplace from an algebraic point 
of view, requires more complex geometric consideration. The following theorem from 
the second book of Euclid's Elements corresponds to it. 

 

Figure 11.2.  Geometric interpretation of the identity (a -b)(a +b) = a2 - b2 
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"If a straight line be cut into equal and unequal segments, the rectangle contained by the 
unequal segments of the whole together with the square on the straight line between the 
points of the section is equal to the square on the half.''[1] 

The theorem is proved as follows. Rectangle ABFE is equal to rectangle BDHF. 
Rectangle BCGF is equal to rectangle GHKJ. If square FGJI is added to these two 
rectangles (which together form rectangle ACGE which is ''contained by the unequal 
segments of the whole'') what we end up with is precisely rectangle BDKI, which is 
constructed ''on the half.'' Thus we have the equality (a + b)(a - b) + b2 = a2 which is 
equivalent to the equality above but does not contain the difficult-to-interpret subtraction 
of areas. 

Clearly, if these very simple algebraic relations require great effort to understand the 
formulation of the theorem--as well as inventiveness in constructing the proof--when they 
are expressed geometrically, then it is impossible to go far down this path. The Greeks 
proved themselves great masters in everything concerning geometry proper, but the line 
of mathematical development that began with algebra and later gave rise to the 
infinitesimal analysis and to modern axiomatic theories (that is to say, the line of 
development involving the use of the language of symbols rather than the language of 
figures) was completely inaccessible to them. Greek mathematics remained limited, 
confined to the narrow framework; of concepts having graphic geometric. 

 
¾¾ARCHIMEDES AND APOLLONIUS 

DURING THE ALEXANDRIAN EPOCH (330 200 B.C.) two great learned men lived in 
whose work Greek mathematics reached its highest point. They were Archimedes (287-
212 B.C.) and Apollonius (265? - 170? B.C.)  

In his works on geometry Archimedes goes far beyond the limits of the figures formed by 
straight lines and circles. He elaborates the theory of conic sections and studies spirals. 
Archimedes's main achievement in geometry is his many theories on the areas. volumes, 
and centers of gravity of figures and bodies formed by other than just straight lines and 
plane surfaces. He uses the "method of exhaustion.'' To illustrate the range of problems 
solved by Archimedes we shall list the problems included in his treatise entitled The 
Method whose purpose, as can be seen from the title, is not a full summary of results but 
rather an explanation of the method of his work. The Method contains solutions to the 
following 13 problems: area of a parabolic segment, volume of a spherE, volume of a 
spheroid (ellipsoid of rotation), volume of a segment of a paraboloid of rotation, center of 
gravity of a segment of a paraboloid of rotation, center of gravity of a hemisphere, 
volume of a segment of a sphere, volume of a segment of a spheroid, center of gravity of 
a segment of a sphere, center of gravity of a segment of a spheroid, center of gravity of a 
segment of a hyperboloid of rotation, volume of a segment of a cylinder, and volume of 
the intersection of two cylinders (the last problem is without proof).  
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Archimedes's investigations in the field of mechanics were just as important as his work 
on geometry. He discovered his famous ''law'' and studied the laws of equilibrium of 
bodies. He was extraordinarily skillful in making different mechanical devices and 
attachments. It was thanks to machines built under his direction that the inhabitants of 
Syracuse, his native city, repulsed the Romans' first attack on their city. Archimedes 
often used mechanical arguments as support in deriving geometric theorems. It would be 
a mistake to suppose, however, that Archimedes deviated at all from the traditional Greek 
way of thinking. He considered a problem solved only when he had found a logically 
flawless geometric proof. He viewed his mechanical inventions as amusements or as 
practical concerns of no scientific importance whatsoever. ''Although these inventions,'' 
Plutarch writes, ''made his superhuman wisdom famous, he nonetheless wrote nothing on 
these matters because he felt that the construction of all machines and all devices for 
practical use in general was a low and ignoble business. He himself strove only to remove 
himself, by his handsomeness and perfection, far from the kingdom of necessity." 

Of all his achievements Archimedes himself was proudest of his proof that the volume of 
a sphere inscribed in a cylinder is two thirds of the volume of the cylinder. In his will he 
asked that a cylinder with an inscribed sphere be shown on his gravestone. After the 
Romans took Syracuse and one of his soldiers (against orders, it is said) killed 
Archimedes, the Roman general Marcellus authorized Archimedes' relatives to carry out 
the wish of the deceased. 

Apollonius was primarily famous for his work on the theory of conic sections. His work 
is in fact a consistent algebraic investigation of second-order curves expressed in 
geometric language. In our day any college student can easily repeat Appolonius' results 
by employing the methods of analytic geometry. But Apollonius needed to show 
miraculous mathematical intuition and inventiveness to do the same thing within a purely 
geometric approach. 

 
¾¾THE DECLINE OF GREEK MATHEMATICS 

''AFTER APOLLONIUS,'' writes B. van der Waerden, ''Greek mathematics comes to a 
dead stop. It is true that there were some epigones, such as Diocles and Zenodorus, who, 
now and then, solved some small problem, which Archimedes and Apollonius had left for 
them, crumbs from the board of the great. It is also true that compendia were written, 
such as that of Pappus of Alexandria (300 A.D.); and ,geometry was applied to practical 
and to astronomical problems, which led to the development of plane and spherical 
trigonometry. But apart from trigonometry, nothing great nothing new appeared. The 
,geometry of the conics remained in the form Apollonius gave it, until Descartes. Indeed 
the works of Apollonius were but little read and were even partly lost. The Method of 
Archimedes was lost sight of and the problem of integration remained where it was, until 
it was attacked new in the seventeenth century. . . "[2] 

The decline of Greek mathematics was in part caused by external factors--the political 
storms that engulfed Mediterranean civilization. Nonetheless, internal factors were 
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decisive. In astronomy, van der Waerden notes, development continued steadily along an 
ascending line; there were short and long periods of stagnation, but after them the work 
was taken up again from the place where it had stopped. In geometry, however, 
regression plainly occurred. The reason is found, of course, in the lack of an algebraic 
language.  

"Equations of the first and second degree," we read in van der Waerden, ''can be 
expressed clearly in the language of geometric algebra and, if necessary, also those of the 
third degree. But to get beyond this point, one has to have recourse to the bothersome tool 
of proportions .  

"Hippocrates, for instance, reduced the cubic equation x3 = V to the proportion  

a :x =x :y = y:b. 

and Archimedes wrote the cubic  

x2 (a-x) = bc2 

in the form 

(a-x) :b = c2: x2." 

"In this manner one can get to equations of the fourth degree; examples can be found 
in Apollonius.... But one cannot get any further; besides, one has to be a 
mathematician of genius, thoroughly versed in transforming proportions with the aid 
of geometric, to obtain results by this extremely cumbersome method. Anyone can use 
our algebraic notation, but only a gifted mathematician can deal with the Greek theory 
of proportions and with geometric algebra.  

Something has to be added, that is, the difficulty of the written tradition.  

Reading a proof in Apollonius requires extended and concentrated study. Instead of a 
concise algebraic formula, one finds a long sentence, in which each line segment is 
indicated by two letters which have to be located in the figure. To understand the line 
of thought, one is compelled to transcribe these sentences in modern concise formulas 
. . .  

An oral explanation makes it possible to indicate the line segments with the fingers; 
one can emphasize essentials and point out how the proof was found. All of this 
disappears in the written formulation of the strictly classical style. The proofs are 
logically sound, but they are not suggestive. One feels caught as in a logical mouse 
trap, but one fails to see the guiding line of thought. 

As long as there was no interruption, as long as each generation could hand over its 
method to the next, everything went well and the science flourished. But as soon as 
some external cause brought about an interruption in the oral tradition, and only books 
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remained, it became extremely difficult to assimilate the work of the great precursors 
and next to impossible to pass beyond it.[3] 

But why, despite their high mathematical sophistication and abundance of talented 
mathematicians, did the Greeks fail to create an algebraic language? The usual answer is 
that their high mathematical sophistication was in fact what hindered them, more 
specifically their extremely rigorous requirements for logical strictness in a theory, for 
the Greeks could not consider irrational numbers, in which the values of geometric 
quantities are ordinarily expressed, as numbers: if line segments were incommensurate it 
was considered that a numerical relationship for them simply did not exist. Although this 
explanation is true in general, still it must be recognized as imprecise and superficial. 
Striving toward logical strictness cannot by itself be a negative factor in the development 
of mathematics. If it acts as a negative factor this will evidently be only in combination 
with certain other factors and the decisive role in this combination should certainly not be 
ascribed to the striving for strictness. Perfect logical strictness in his final formulations 
and proofs did not prevent Archimedes from using guiding considerations which were not 
strict. Then why did it obstruct the creation of an algebraic language? Of course, this is 
not simply a matter of a high standard of logical strictness, it concerns the whole way of 
thinking, the philosophy of mathematics. In creating the modern algebraic language 
Descartes went beyond the Greek canon, but this in no way means that he sinned against 
the laws of logic or that he neglected proof. He considered irrational numbers to be 
''precise" also, not mere substitutions for their approximate values. Some problems with 
logic arose after the time of Descartes, during the age of swift development of the 
infinitesimal analysis. At that time mathematicians were so carried away by the rush of 
discoveries that they simply were not interested in logical subtleties. In the nineteenth 
century came time to pause and think, and then a solid logical basis was established for 
the analysis.  

We shall grasp the causes of the limitations of Greek mathematics after we review the 
substance of the revolution in mathematics made by Descartes. 

 
¾¾ARITHMETIC ALGEBRA 

ADVANCES IN GEOMETRY forced the art of solving equations into the background. 
But this art continued to develop and gave rise to arithmetie algebra. The emergence of 
algebra from arithmetic was a typical metasystem transition. When an equation must be 
solved, whether it is formulated in everyday conversational language or in a specialized 
language, this is an arithmetic problem. And when the general method of solution is 
pointed out--by example, as is done in elementary school. or even in the form of a 
formula--we still do not go beyond arithmetic. Algebra begins when the equations 
themselves become the object of activity, when the properties of equations and rules for 
converting them are studied. Probably everyone who remembers his first acquaintance 
with algebra in school (if this was at the level of understanding, of course, not blind 
memorization) also remembers the happy feeling of surprise experienced when it turns 
out that various types of arithmetic problems whose solutions had seemed completely 
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unrelated to one another are solved by the same conversions of equations according to a 
few simple and understandable rules. All the methods known previously fall into place in 
a harmonious system, new methods open up, new equations and whole classes of 
equations come under consideration (the law of branching growth of the penultimate 
level), and new concepts appear which have absolutely no meaning within arithmetic 
proper: negative, irrational, and imaginary numbers.  

In principle the creation of a specialized language is not essential for the development of 
algebra. In fact, however, only with the creation of a specialized language does the 
metasystem transition in people's minds conclude. The specialized language makes it 
possible to see with one's eyes that we are dealing with some new reality, in this case 
with equations, which can be viewed as an object of computations just as the objects 
(numbers) of the preceding level were. People typically do not notice the air they breathe 
and the language they speak. But a newly created specialized language goes outside the 
sphere of natural language and is in part nonlinguistic activity. This facilitates the 
metasystem transition. Of course, the practical advantages of using the specialized 
language also play an enormous part here; among them are making expressions visible, 
reducing time spent recopying, and so on. 

The Arab scholar Muhammed ibn Musa al-Khwarizmi (780-850) wrote several treatises 
on mathematics which were translated into Latin in the twelfth century and served as the 
most important textbooks in Europe for four centuries. One of them, the Arithmetic, gave 
Europeans the decimal system of numbers and the rules (algorithms--the name is based 
on al-Khwarizmi) for performing the four arithmetic operations on numbers written in 
this system. Another work was entitled Book of Al Jabr Wa'l Muqabala. The purpose of 
the book was to teach the art of solving equations, an art which is essential, as the author 
writes, ''in cases of inheritance, division of property, trade, in all business relationships, 
as well as when measuring land, laying canals, making geometric computations, and in 
other cases....'' Al Jabr and al Mugabala are two methods al-Khwarizmi uses to solve 
equations. He did not think up these methods himself; they were described and used in 
the Arithmetica of the Greek mathematician Diophantus (third century A.D.), who was 
famous for his methods of solving whole-number (''diophantine'') equations. In the same 
Arithmetica of Diophantus we find the rudiments of letter symbolism. Therefore, if 
anyone is to be considered the progenitor of arithmetic algebra it should obviously be 
Diophantus. But Europeans first heard of algebraic methods from al-Khwarizmi while the 
works of Diophantus became known much later. There is no special algebraic symbolism 
in al-Khwarizmi, not even in rudimentary form. The equations are written in natural 
language. But for brevity's sake, we shall describe these methods and give our examples 
using modern symbolic notation. 

Al Jabr involves moving elements being subtracted from one part of the equation to the 
other; al Muqabala involves subtracting the same element from both parts of the equation. 
Al-Khwarizmi considers these procedures different because he does not have the concept 
of a negative number. For example let us take the equation 

7x - 11 = 5x - 3. 
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Applying the al Jabr method twice, for the 11 and 3, which are to be subtracted, we 
receive: 

7x + 3 = 5x + 11. 

Now we use the al Muqabala method twice, for 3 and 5x. We receive 

2x = 8. 

From this we see that 

x = 4. 

So although al-Khwarizmi does not use a special algebraic language, his book contains 
the first outlines of the algebraic approach. Europeans recognized the merits of this 
approach and developed it further. The very word algebra comes from the name of the 
first of al-Khawarizmi's methods. 

 
¾¾ITALY, SIXTEENTH CENTURY 

IN THE FIRST HALF of the sixteenth century the efforts of Italian mathematicians led to 
major changes in algebra which were associated with very dramatic events. Scipione del 
Ferro (1465-1526). a professor at the University of Bologna, found a general solution to 
the cubic equation x3 +px = q where p and q are positive. But del Ferro kept it secret, 
because it was very valuable in the problem-solving competitions which were held in 
Italy at that time. Before his death he revealed his secret to his student Fiore. In 1535 
Fiore challenged the brilliant mathematician Niccolo Tartaglia (1499-1557) to a contest. 
Tartaglia knew that Fiore possessed a method of solving the cubic equation, so he made 
an all-out effort and found the solution himself. Tartaglia won the contest, but he also 
kept his discovery secret. Finally, Girolamo Cardano (1501-1576) tried in vain to find the 
algorithm for solving the cubic equation. In 1539 he finally appealed to Tartaglia to tell 
him the secret. Having received a "sacred oath'' of silence from Cardano, Tartaglia 
unveiled the secret, but only partially and in a rather unintelligible form. Cardano was not 
satisfied and made efforts to familiarize himself with the manuscript of the late del Ferro. 
In this he was successful, and in 1545 he published a book in which he reported his 
algorithm, which reduces the solution of a cubic equation to radicals (the "Cardano 
formula''). This same book contained one more discovery made by Cardano's student 
Luigi (Lodovico) Ferrari (1522-1565): the solution of a quartic equation in radicals. 
Tartaglia accused Cardano of violating his oath and began a bitter and lengthy polemic. It 
was under such conditions that modern mathematics made its first significant advances. 

Using a tool suggests ways to improve it. While striving toward a uniform solution to 
equations, mathematicians found that it was extremely useful in achieving this goal to 
introduce certain new objects and treat them as if these were numbers. And in fact they 
were called numbers although it was understood that they differed from ''real'' numbers: 
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this was seen in the fact that they were given such epithets as "false'' "fictitious,'' 
''incomprehensible,'' and "imaginary." What they correspond to in reality remained 
somewhat or entirely unclear. Whether their use was correct also remained debatable. 
Nonetheless, they began to be used increasingly widely, because with them it was 
possible to obtain finite results containing only "real" numbers which could not be 
obtained otherwise. A person consistently following the teachings of Plato could not use 
''unreal'' numbers. But the Indian, Arabic, and Italian mathematicians were by no means 
consistent Platonists. For them a healthy curiosity and pragmatic considerations 
outweighed theoretical prohibitions. In this, however, they did make reservations and 
appeared to be apologizing for their ''incorrect'' behavior.  

All "unreal'' numbers are products of the reverse movement in the arithmetic model: 
formally they are solutions to equations that cannot have solutions in the area of "real'' 
numbers. First of' all we must mention negative numbers. They are found in quite 
developed form in the Indian mathematician all Bahascara (twelfth century), who 
performed all four arithmetic operations on such numbers. The interpretation of the 
negative number as a debt was known to the Indians as early as the seventh century.  In 
formulating the rules of operations on negative numbers. Bhascara calls them ''debts,'' and 
calls positive numbers ''property.'' He does not choose to declare the negative number an 
abstract concept like the positive number. "People do not approve of abstract negative 
numbers,'' Bhascara writes. The attitude toward negative numbers in Europe in the 
fifteenth and sixteenth centuries was similar. In geometric interpretation negative roots 
are called ''false'' as distinguished from the 'true'' positive roots. The modern 
interpretation of negative numbers as points lying to the left of the zero point did not 
appear until Descartes' Géométrie (1637). Following tradition, Descartes called negative 
roots false.  

Formal operations on roots of numbers that cannot be extracted exactly go back to deep 
antiquity, when the concept of incommensurability of line segments had not yet appeared. 
In the fifteenth and sixteenth centuries people handled them cavalierly: they were helped 
here, of course, by the simple geometric interpretation. An understanding of the 
theoretical difficulty which arises from the incommensurability of line segments can be 
.seen by the fact that the numbers were called "irrational."  

The square of any number is positive: therefore the square root of a negative number does 
not exist among positive, negative, rational, or irrational numbers. But Cardano was 
daring enough to use (not w without reservations) the roots of negative numbers. ' 
Imaginary'' numbers thus appeared. The logic of using algebraic language drew 
mathematicians inexorably down an unknown path. It seemed wrong and mysterious. but 
intuition suggested that all these impossible numbers were profoundly meaningful and 
that the new path would prove useful. And it certainly did. 
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¾¾LETTER SYMBOLISM 

THE RUDIMENTS of algebraic letter symbolism are first encountered, as mentioned 
above, in Diophantus. Diophantus used a character resembling the Latins to designate an 
unknown. It is hypothesized that this designation originates from the last letter of the 
Greek word for number: Üñéèìüó a[rho][iota][theta]u[omicron][sigma] (arithmos). He 
also had abbreviated notations for the square cube, and other degrees of the unknown 
quantity. He did not have an addition sign: quantities being added were written in a 
series, something like an upside-down Greek letter ø [psi] was used as the subtraction 
sign, while the first letter of the Greek word éóïó [iota]d[omicron]d for ''equal" was used 
as the equal sign, everything else was expressed in words. Known quantities were always 
written in concrete numerical form while there were no designations for known, but 
arbitrary numbers. 

Diophantus' Arithmetica became known in Europe in 1463. In the late fifteenth and early 
sixteenth centuries European mathematicians first Italians and then others began to use 
abbreviated notations. These abbreviations gradually wandered from arithmetic algebra to 
geometric, and unknown geometric quantities also began to be designated by letters. In 
the late sixteenth century the Frenchman François Vieta (1540-1603) took the next 
important step. He introduced letter designations for known quantities and was thus able 
to write equations in general form. Vieta also introduced the term "coefficient.'' In 
external appearance Vieta's symbols are still rather far from modern ones. For example, 
Vieta writes 

 

instead of our notation  

D(2B3 - D3) 

__________ 

B3 + D3 

By the beginning of the seventeenth century the situation in European mathematics was 
as follows. There were two algebras. The first was arithmetic based on symbols created 
by the Europeans themselves and representing a substantial advance in comparison with 
the arithmetic of the ancients. The second algebra, geometric algebra, was part of 
geometry. It was taken, as was the whole of geometry, from the Greeks. The 
fundamentals were from Euclid's Elements and the further development came primarily 
from the works of Pappus of Alexandria and Apollonius, who had been thoroughly 
studied by that time. Nothing fundamentally new had been done in this field. We cannot 
say that there was no relationship at all between these two algebra: equation of degrees 
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higher than the first could only receive geometric interpretation, for where else could 
squares, cubes, and higher degrees of an unknown number occur but in computing areas, 
volumes and manipulations of line segments related to complex systems of proportions? 
The very names of the second and third degrees, the square and the cube, illustrate this 
very eloquently. Nonetheless, the gap between the concepts of quantity (or magnitude) 
and number remained and in full conformity with the Greek canon only geometric proofs 
w ere considered real. When geometric objects--lengths, areas, and volumes--appeared in 
equations they operated either as geometric quantities or as concrete numbers. Geometric 
quantities were thought of as necessarily something spatial and, because of 
incommensurability not reducible to a number.  

This was the situation that René Descartes (1596-1650), one of the greatest thinkers who 
has ever lived, encountered. 

 
¾¾WHAT DID DESCARTES DO? 

DESCARTES' ROLE as a philosopher is generally recognized. But when Descartes as a 
mathematician is discussed it is usually indicated that he "refined algebraic notations and 
created analytical geometry.'' Sometimes it is added that at approximately the same time 
the basic postulates of analytic geometry were proposed, independently of Descartes, by 
his countryman Pierre de Fermat (1601-1665), while Vieta had already made full use of 
algebraic symbols. It comes out, thus, that there is no special cause to praise Descartes 
the mathematician, and in fact many authors writing about the history of mathematics do 
not give him his due. However, Descartes carried out a revolution in mathematics. He 
created something incomparably greater than analytic geometry (understood as the theory 
of curves on a plane). What he created was a new approach to describing the phenomena 
of reality: the modern mathematical language. 

It is sometimes said that Descartes ''reduced geometry to algebra" which means, of course 
numerical algebra, arithmetic algebra. This is a flagrant mistake. It is true that Descartes 
overcame the gap between quantity and number, between geometry and arithmetic. He 
did not achieve this by reducing one language to the other, however: he created a new 
language, the language of algebra. Not arithmetic algebra, not geometric algebra, simply 
algebra. In syntax the new language coincided with arithmetic algebra. but by semantics 
it coincided with geometric. In Descartes' language the symbols do not designate number 
or quantities, but relations of quantities. This is the essence of the revolution called out by 
Descartes. 

The modern reader will perhaps shrug his shoulders and think ''So what"? Could this 
logical nuance really have been very important?'' As it turns out, it was. It was precisely 
this ''nuance'' that had prevented the Greeks from taking the next step in their 
mathematics. 

We have become so accustomed to placing irrational numbers together with rational ones 
that we are no longer aware of the profound difference which exists between them. We 
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write  as we write 4/5 and we call  number and, when necessary, substitute an 
approximate value for it. And there is no way we can understand why the ancient Greeks 
responded with such pain to the incommensurability of line segments. But if we think a 
little, we cannot help agreeing with the Greeks that  is not a number. It can be 
represented as an infinite process which generates the sequential characters of expansion 
of  in decimal fractions. It can also be pictured in the form of a boundary line in the 
field of rational numbers--one that divides rational numbers into two classes: those which 
are less than  and those which are greater than . In this case the rule is very simple: 
the rational number a belongs to the first class if a2 < 2 and to the second where this is 
not true. Finally,  can be pictured in the form of a relation between two line segments, 
between the diagonal of a square and its side in the particular case. These representations 
are equivalent to one another but they are not at all equivalent to the representation of the 
whole or fractional number.  

This by no means implies that we are making a mistake or not being sufficiently strict 
when we deal with  as a number. The goal of mathematics is to create linguistic 
models of reality, and all means which lead to this goal are good. Why shouldn't our 
language contain characters of the type  in addition to ones such as 4/5? It is my 
language and I will do what I want to with it.'' The only important thing is that we be able 
to interpret these characters and perform linguistic conversions on them. But we are able 
to interpret . In practical computations the first of the three representations in the 
preceding paragraph may serve a. the basis of interpretation. while in geometry the third 
can be used. We can also carry out other computations with them. All that remains now is 
to refine the terminology. Let us stipulate that we shall use the term rational numbers for 
what were formerly called numbers, name the new objects irrational numbers, and use 
the term numbers for both (real numbers according to modern mathematical 
terminology). Thus, in the last analysis, there is no difference in principle between  
and 4/5 and we have proved wiser than the Greeks. This wisdom was brought in as 
contraband by all those who operated with the symbol  as a number, while recognizing 
that it was "irrational." It was Descartes who substantiated this wisdom and established it 
as law. 

 
¾¾THE RELATION AS AN OBJECT 

THE GREEKS' failure to create algebra is profoundly rooted in their philosophy. They 
did not even have arithmetic algebra. Arithmetic equations held little interest for them: 
after all, even quadratic equations do not, generally speaking, have exact numerical 
solutions. And approximate calculations and everything bound up with practical 
problems were uninteresting to them. On the other hand, the solution could have been 
found by geometric construction! But even if we assume that the Greek mathematicians 
of the Platonic school were familiar with arithmetic letter symbols it is difficult to 
imagine that they would have performed Descartes' scientific feat. To the Greeks 
relations were not ideas and therefore did not have real existence. Who would ever think 
of using a letter to designate something that does not exist? The Platonic idea is a 
generalized image, a form, a characteristic: it can be pictured in the imagination as a 
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more or less generalized object. All this is primary and has independent existence an 
existence even more real than that of things perceived by the senses. But what is a 
relation of line segments? Try to picture it and you will immediately see that what you 
are picturing is precisely two line segments, not any kind of relation. The concept of the 
relation of quantities reflects the process of measuring one by means of the other. But the 
process is not an idea in the Platonic sense: it is something secondary that does not really 
exist. Ideas are eternal and invariable, and by this alone have nothing in common with 
processes. 

Interestingly, the concept of the relation of quantities, which reflects characteristics of the 
measurement process, was introduced in strict mathematical form as early as Eudoxus 
and was included in the fifth book of Euclid's Elements. This was exactly the concept 
Descartes used. But the relation as an object is not found in Eudoxus or in later Greek 
mathematicians: after being introduced it slowly gave way to the proportion which it is 
easy to picture as a characteristic of four line segments formed by two parallel lines 
intersecting the sides of an angle.  

The concept of the relation of quantities is a linguistic construct, and quite a complex 
one. But Platonism did not permit the introduction of constructs in mathematics: it 
limited the basic concepts of mathematics to precisely representable static spatial images. 
Even fractions were considered somehow irregular by the Platonic school from the point 
of view of real mathematics. In The Republic we read: "If you want to divide a unit. 
learned mathematicians will laugh at you and will not permit you to do it: if you change a 
unit for small pieces of money they believe it has been turned into a set and are careful to 
avoid viewing the unit as consisting of parts rather than as a whole.'' With such an 
attitude toward rational numbers, why even talk about irrational ones!  

We can briefly summarize the influence of Platonic idealism on Greek mathematics as 
follows. By recognizing mathematical statements as objects to work with. the Greeks 
made a metasystem transition of enormous importance but then they immediately 
objectivized the basic elements of mathematical statements and began to view them as 
part of a nonlinguistic reality, "the world of ideas." In this way they closed off the path to 
further escalation of critical thinking to becoming aware of the basic elements (concepts) 
of mathematics as phenomema of language and to creating increasingly more complex 
mathematical constructs. The development of mathematics in Europe was a continuous 
liberation from the fetters of Platonism. 

 
¾¾DESCARTES AND FERMAT 

IT IS VERY INSTRUCTIVE to compare the mathematical world of Descartes and 
Fermat. As a mathematician Fermat was as gifted as Descartes, perhaps even more so. 
This can be seen from his remarkable works on number theory. But he was an ardent 
disciple of the Greeks and continued the traditions. Fermat set forth his discoveries on 
number theory in remarks in the margins of Diophantus' Arithmetica His works on 
geometry originated as the result of efforts to prove certain statements referred to by 
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Pappus as belonging to Apollonius, but presented without proofs. Reflecting on these 
problems, Fermat began to systematically represent the position of a point on a plane by 
the lengths of two line segments: the abscissa and the cardinal and represent the curve as 
an equation relating these segments. This idea was not at all new from a geometric point 
of view: it was a pivotal idea not only in Apollonius but even as far back as Archimedes, 
and it originates with even more ancient writers. Archimedes describes conic sections by 
their ''symptoms" that is, the proportions which connect the abscissas and ordinates of the 
points. As an example, let us take an ellipsis with the longer (major) axis AB. 

 

Figure 11.3. 

Perpendicular line PQ which is dropped from a certain point of the ellipsis P to axis AB is 
called the ordinate, and segments AQ and QB are the abscissas of this point (both terms 
are Latin translations of Archimedes' Greek terms). The ratio of the area of a square 
constructed on the ordinate to the area of the rectangle constructed on the two abscissas is 
the same for all points P lying on the ellipsis. This is the "symptom'' of the ellipsis, that 
is, in essence, its equation. It can be written as Y2: X1 X2 = const. Analogous symptoms 
are established for the hyperbola and parabola. How is this not a system of coordinates ? 

Unlike the ancients, Fermat formulates the symptoms as equations in Vieta's language, 
not in the form of proportions described by words. This makes conversions easier: 
specifically, it can be seen immediately that it is more convenient to leave one abscissa 
than two. But the approach continues to be purely geometric, spatial. 

Fermat set forth his ideas in the treatise "Ad locos planos et solidos isagoge" 
(Introduction to Plane and Solid Loci). This work was published posthumously in 1679, 
but it had been known to French mathematicians as early as the 1630s, somewhat earlier 
than Descartes' mathematical works. 

Descartes famous Géométrie came out in 1637. Descartes was not of course, at all 
influenced by Fermat (it is unknown whether he even read Fermat's treatise); Descartes' 
method took shape in the 1620's, long before the Géométrie was published. Nonetheless, 
the properly geometrical ideas of Descartes and Fermat are practically identical. But 
Descartes created a new algebra based on the concept of the relation of geometric 
quantities. In Vieta only similar quantities can be added and subtracted and coefficients 
must include an indication of their geometric nature. For example, the equation which we 
would write as 
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A3 + BA = D. 

Vieta wrote as follows: 

A cubus + B planum in A aequatur D solido. 

This means the cube with edge A added to area B multiplied by A is equal to the volume 
D. Vieta and Fermat are intellectual prisoners of the Greek geometric algebra. Descartes 
breaks with it decisively. The relations Descartes' algebra deals with are not geometric, 
spatial objects, but theoretical concepts, "numbers." Descartes is not restricted by the 
requirement for uniformity of things being added or the general requirement of a spatial 
interpretation; he understands raising to a power as repeated multiplication and indicates 
the number of factors by a small digit above and to the right. Descartes' symbolism 
virtually coincides with our modern system. 

 
¾¾THE PATH TO DISCOVERY 

FERMAT WAS ONLY a mathematician; Descartes was above all a philosopher. His 
reflections went far beyond mathematics and dealt with the problems of the essence of 
being and knowledge. Descartes was the founder of the philosophy of rationalism which 
affirms the human being's unlimited ability to understand the world on the basis of a 
small number of intuitively clear truths and proceeding forward step by step using 
definite rules or methods. These two words are key words for all Descartes' philosophy. 
The name of his first philosophical composition was Regulae ad directionem ingenii 
(Rules for the Direction of the Mind), and his second was Discours de la méthode 
(Discourse on the Method). The Discours de la méthode was published in 1637 in a 
single volume with three physico-mathematical treatises: "La Dioptrique" (the Dioptric), 
"les Meteores" (Meteors) and "la Gémétrie'' (Geometry). The Discours preceded them as 
a presentation of the philosophical principles on which the following parts were based. In 
this Discours Descartes proposes the following four principles of investigation: 

The first of these was to accept nothing as true which I did not clearly recognize to be so: 
that is to say, carefully to avoid precipitation and prejudice in judgements and to accept in 
them nothing more than what was presented to my mind so clearly and distinctly that I 
could have no occasion to doubt it.  

The second was to divide up each of the difficulties which I examined into as many parts 
as possible, and as seemed requisite in order that it might be resolved in the best manner 
possible.  

The third was to carry on my reflections into order, commencing with objects that were the 
more simple and easy to understand, in order to rise little by little, or by degrees, to 
knowledge of the most complex assuming order, even it a fictitious one, among those 
which do not follow a natural sequence relatively to one another. 
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The last was in all cases to make enumerations so complete and reviews so general that I 
should be certain of having omitted nothing.[4] 

Descartes arrived at his mathematical ideas guided by these principles. Here is how he 
himself describes his path in Discours de la méthode: 

And I have not much trouble in discovering which objects it was necessary to begin with, 
for I already knew that it was with the most simple and those most easy to apprehend. 
Considering also that of all those who have hitherto sought for the truth in the Sciences, it 
has been the mathematicians alone who have been able to succeed in making any 
demonstrations, that is to say, producing reasons which are evident and certain. I did not 
doubt that it had been by means of a similar kind that they carried on their investigations.... 
But for all that I had no intention of trying to master all those particular sciences that 
receive in common the name of Mathematics; but observing that, although the objects are 
different, they do not fail to agree in this, that they take nothing under consideration but the 
various relationships or proportions which are present in these objects. I thought that it 
would be better if I only examined those proportions in their general aspect, and without 
viewing them otherwise than in the objects which would serve most to facilitate a 
knowledge of them. Not that I should in any way restrict them to these objects. for I might 
later on all the more easily apply them to all other objects to which they were applicable. 
Then, having carefully noted that in order to comprehend the proportions I should 
sometimes require to consider each one in particular, and sometimes merely keep them in 
mind, or take them in groups,  I thought that in order the better to consider them in detail, I 
should picture them in the form of lines, because I could find no method more simple nor 
more capable of being distinctly represented to my imagination and senses. I considered, 
however, that in order to keep them in my memory or to embrace several at once, it would 
be essential that I should explain them by means of certain formulas, the shorter the better. 
And for this purpose it was requisite that I should borrow all that is best in Geometrical 
Analysis and Algebra, and correct the errors of the one by the other.[5] 

We can see from this extremely interesting testimony that Descartes was clearly aware of 
the semantic novelty of his language based on the abstract concept of the relation and 
applicable to all the phenomena of reality. Lines serve only to illustrate the concept of the 
relation, just as a collection of little sticks serves to illustrate the concept of number. In 
their mathematical works Descartes and subsequent mathematicians have followed 
tradition and used the term "quantity" for that which is designated by letters, but 
semantically these are not the spatial geometric quantities of the Greeks but rather their 
relations. In Descartes the concept of quantity is just as abstract as the concept of number. 
But of course, it cannot be reduced to the concept of number in the exact meaning of the 
word, that is, the rational number. Explaining his notations in the Géométrie, Descartes 
points out that they are similar (but not identical) to the notations of arithmetic algebra: 

Just as arithmetic consists of only four or five operations, namely, addition, subtraction, 
multiplication, division, and the extraction of roots, which may be considered a kind of 
division, so in geometry, to find required lines it is merely necessary to add or subtract 
other lines: or else, taking one line which I shall call unit) in order to relate it as closely) as 
possible to numbers, and which can in general be chosen arbitrarily and having given two 
other lines, to find a fourth line which shall be to one of the given lines as the other is to 
unity which is the same as multiplication: or, again, to find a fourth line which is to one of 
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the given lines as unity is to the other (which is equivalent to division): or, finally, to find 
one, two, or several mean proportionals between units and some other line (which is the 
same as extracting the square root. cube root, etc., of the given line). And I shall not 
hesitate to introduce these arithmetical terms into geometry, for the sake of greater 
clearness."[6] 

The semantics of Descartes' algebraic language are much more complex than the 
semantics of the arithmetic and geometric languages which rely on graphic images. The 
use of such a language changes one's view of the relation between language and reality. It 
is discovered that the letters of mathematical language may signify not only numbers and 
figures, but also something much more abstract (to be more precise ''constructed''). This 
is where the invention of new mathematical languages and dialects and the introduction 
of new constructs began. The precedent was set by Descartes. Descartes in fact laid the 
foundation for describing the phenomena of reality by means of formalized symbolic 
languages. 

The immediate importance of Descartes' reform was that it untied the hands of 
mathematicians to create, in abstract symbolic form, the infinitesimal analysis whose 
basic ideas in geometric form were already known to the ancients. If we go just half a 
century from the publication date of the Géométrie we find ourselves in the age of 
Leibnitz and Newton, and 50 more years brings us to the age of Euler. 

The history of science shows that the greatest glory usually doesnot go to those who lay 
the foundations and, of course, not to those who work on the small finishing touches: 
rather it goes to those who are the first in a new line of thought to obtain major results 
which strike the imagination of their contemporaries or immediate descendants. In 
European physico-mathematical science this role was played by Newton. But as Newton 
said, ''If I have seen further than Descartes, it is by standing on the shoulders of giants.'' 
This is, of course, evidence of the modesty of a brilliant scientist but it is also a  
recognition of the debt of the first great successes to the pioneers who showed the way. 
The apple which made Newton famous grew on a tree planted by Descartes.  

 

[1] The Thirteen Books of Euclid's Elements, translated and annotated by T. L. Heath, 
(Cambridge: Cambridge University Press, 1908), vol. 1. p. 382. 

[2] B. van der Waerden Science Awakening (New York: Oxford University Press, 1969), 
p. 264. 

[3] B. van der Waerden Science Awakening, p. 266. 

[4] Descartes, Spinoza, Great Books of the Western World, Encyclopaedia Britanica Inc., 
Vol 31, 1952, p. 47. 

[5] Descartes, ibid., p. 47. 
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CHAPTER TWELVE 
 

From Descartes To Bourbaki 
 
FORMALIZED LANGUAGE 

"THE NEXT STOP IS APRELEVKA STATION", a hoarse voice announces through the 
loudspeaker. ''I repeat Aprelevka Station. The train does not have a stop at Pobeda 
Station.'' 

You are riding a commuter train on the Kiev Railroad and because you have forgotten to 
bring a book and there is nothing for you to do you begin reflecting on how carelessly we 
still treat our native language. Really, what an absurd expression ''does not have a stop.'' 
Wouldn't it be simpler to say ''does not stop"? Of these bureaucratic governmental 
expressions, people write about it all the time, but it hasn't done any good yet.  

If you do not get off at Aprelevka, however, and you have time for further reflection you 
will see that this is by no means a matter of a careless attitude toward our native 
language; in fact ''does not have a stop'' does not mean quite the same thing as ''does not 
stop.'' The concept of the stop in railroad talk is not the same as the concept of ceasing 
movement. The following definition, not too elegant but accurate enough, can be given: a 
stop is a deliberate cessation of the train's movement accompanied by the activities 
necessary to ensure that passengers get on and off the train. This is a very important 
concept for railroad workers and it is linked to the noun ''stop'' not to the verb ''to stop.'' 
Thus if the engineer stopped the train but did not open the pneumatic doors, the train 
''stopped" but it did not ''have a stop." 

The railroad worker who made the announcement did not, of course, perform such a 
linguistic analysis. He simply used the ordinary professional term, which enabled him to 
express his thought exactly, even if it seemed somewhat clumsy to a nonprofessional. 
This is an instance of a very common phenomenon: when language is used for 
comparatively narrow professional purposes there is a tendency to limit the number of 
terms used and to give them more precise and constant meanings. We say the language is 
formalized. If this process is carried through to its logical conclusion the language will be 
completely formalized. 

The concept of a formalized language can be defined as follows. Let us refer to our 
diagram of the use of linguistic models of reality (see figure 9.5) and put the question: 
how is the conversion L1 → L2 performed, on what information does it depend? We can 
picture two possibilities: 

1. The conversion L1 →  L2 is determined exclusively by linguistic objects L1 which 
participate in it and do not depend on those nonlinguistic representations S1 which 
correspond to them according to the semantics of the language. In other words, the 
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linguistic activity depends only on the ''form'' of the language objects not on their 
''content'' (meaning).  

2. The result of the conversion of linguistic object L1 depends less on the type of object 
L1 itself than on representation S1 it generates in the person's mind, on the 
associations in which it is included, and therefore on the person's personal 
experience of life.  

 

In the first case we call the language formalized, while in the second case it is 
unformalized. We should emphasize that complete formalization of a language does not 
necessarily mean complete algorithmization of it, the situation where all linguistic 
activity amounts to fulfilling precise and unambiguous prescriptions as a result of which 
each linguistic object L1 is converted into a completely definite object L2. The rules of 
conversion  L1 → L2 can be formalized as more or less rigid constraints and leave a 
certain freedom of action; the only important thing is that these constraints depend on the 
type of object L1 and potential objects L2 by themselves alone and not on the meanings of 
the linguistic objects. 

The definition we have given of a formalized language applies to the case where 
language is used to create models of reality. When a language serves as a means of 
conveying control information (the language of orders) there is a completely analogous 
division into two possible types of responses: 

1. The person responds in a strictly formal manner to the order, that is, his actions 
depend only on the information contained in the text of the order, which is viewed as an 
isolated material system. 

2. The person's actions depend on those representations and associations the order 
evokes in him. Thus, he actually uses much more information than that contained in the 
text of the order. 

There is no difference in principle between the language of orders and the language of 
models. The order "Hide!'' can be interpreted as the model "If you don't hide your life is 
in danger.'' The difference between the order and the model is a matter of details of 
information use. In both cases the formalized character of the language leads to a definite 
division of syntax and semantics, a split between the material linguistic objects and the 
representations related to them; the linguistic objects acquire the characteristics of an 
independent system. 

Depending on the type of language which is used we may speak of informal and formal 
thinking. In informal thinking, linguistic objects are primarily important to the extent that 
they evoke definite sets of representations in us. The words here are strings by which we 
extract from our memory particles of our experience of life; we relive them, compare 
them, sort through them, and so on. The result of this internal work is the conversion of 
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representations S1 →  S2, which models the changes R1 → R2 in the environment. But this 
does not mean that informal thinking is identical to nonlinguistic thinking. In the first 
place, by itself the dismembering of the stream of perceptions depends on a system of 
concepts fixed in language. In the second place, in the process of the conversion S1 -> S2 
the "natural form'' of the linguistic object, the word, plays a considerable part. Very often 
we use associations among words, not among representations. Therefore the formula for 
nonformal thinking can be represented as follows: (S1, L1) →  (S2, L2). 

In formal thinking we operate with linguistic objects as if they were certain independent 
and self-sufficient essences, temporarily forgetting their meanings and recalling them 
only when it is necessary to interpret the result received or refine the initial premises. The 
formula for formal thinking is as follows: S1 → L1→ L2 → S2. 

In order for formal thinking to yield correct results, the semantic system of the language 
must possess certain characteristics we describe by such terms as ''precision,'' 
''definiteness,'' and ''lack of ambiguity.'' If the semantic system does not possess these 
characteristics, we shall not be able to introduce such formal conversions L1 → L2 in 
order that, by using them, we may always receive a correct answer. Of course, it is 
possible to establish the formal rules of conversions somehow and thus obtain a 
formalized language, but this will be a language that sometimes leads to false 
conclusions. Here is an example of a deduction which leads to a false result because of 
ambiguity in the semantic system: 

Vanya is a gypsy.  
The gypsies came to Europe from India.  

 
Therefore, Vanya came to Europe from India.  

In practice, thus, semantic precision and syntactical formalization are inseparable, and a 
language that satisfies both criteria is called formalized. But the leading criterion is the 
syntactical one, for the very concept of a precise semantic system can be defined strictly 
only through syntax. And indeed, the semantic system is precise if it is possible to 
establish formalized syntax which yields only true models of reality. 

 
¾¾THE LANGUAGE MACHINE 

BECAUSE the syntactical conversions L1 →  L2 within the framework of a formalized 
language are determined entirely by the physical type of objects Li, the formalized 
language is in essence a machine that produces different changes of symbols. For a 
completely algorithmized language, such as the language of arithmetic, this thesis is 
perfectly obvious and is illustrated by the existence of machines in the ordinary, narrow 
sense of the word (calculators and electronic computers) that carry out arithmetic 
algorithms. If the rules of conversion are constraints only, it is possible to construct an 
algorithm that determines whether the conversion L1 →  L2 is proper for given L1 and L2. 
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It is also possible to construct an algorithm (a ''stupid'' one) which for a given L1 begins to 
issue all proper results for L2 and continues this process to infinity if the number of 
possible L2 is unlimited. In both cases we are dealing with a certain language machine, 
that can work without human intervention.  

The formalization of a language has two direct consequences. In the first place, the 
process of using linguistic models is simplified because precise rules for converting L1 → 
L2 appear. In the extreme case of complete algorithmization, this conversion can 
generally be carried out automatically. In the second place, the linguistic model becomes 
independent of the human brain which created it, and becomes an objective model of 
reality. Its semantic system reflects, of course, concepts that have emerged in the process 
of the development of the culture of human society, but in terms of syntax it is a language 
machine that could continue to work and preserve its value as a model of reality even if 
the entire human race were to suddenly disappear. By studying this model an intelligent 
being with a certain knowledge of the object of modeling would probably be able to 
reproduce the semantic system of the language by comparing the model to his own 
knowledge. Let us suppose that people have built a mechanical model of the Solar 
System in which the planets are represented by spheres of appropriate diameters 
revolving on pivots around a central sphere, representing the sun, in appropriate orbits 
with appropriate periods. Then let us suppose that this model has fallen into the hands 
(perhaps the tentacles?) of the inhabitants of a neighboring stellar system, who know 
some things about our Solar System--for example, the distances of some planets from the 
sun or the times of their revolutions. They will be able to understand what they have in 
front of them, and they will receive additional information on the Solar System. The same 
thing is true of scientific theories, which are models of reality in its different aspects, 
built with the material of formalized symbolic language. Like a mechanical model of the 
Solar System, each scientific theory can in principle be deciphered and used by any 
intelligent beings. 

 
¾¾FOUR TYPES OF LINGUISTIC ACTIVITY 

Language can be characterized not only by the degree of its formalization but also by the 
degree of its abstraction, which is measured by the abundance and complexity of the 
linguistic constructs it uses. As we noted in chapter 7, it would be more correct to speak 
of the ''construct quality'' of a language rather than of its abstractness, but the former term 
[the Russian ''konstruktnost''] has not yet been accepted. Therefore we shall use the term 
''abstractness.'' We shall call a language which does not use constructs or uses only those 
of the very lowest level ''concrete,'' and we shall call a language which does use complex 
constructs ''abstract.'' Although this is a conditional and relative distinction, its meaning is 
nonetheless perfectly clear. And it does not depend on dividing languages into formalized 
and unformalized, which are different aspects of language. By combining all these 
aspects we obtain four types of languages used in the four most important spheres of 
linguistic activity. They can be arranged according to the table below: 
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 Concrete Language  Abstract Language  

Unformalized Language   Art  Philosophy  

Formalized Language  Descriptive Sciences  Theoretical sciences (mathematics)  

Neither the vertical nor the horizontal division is strict and unambiguous; the differences 
are more of a quantitative nature. There are transitional types on the boundaries between 
these "pure'' types of language.  

Art is characterized by unformalized and concrete language. Words are important only as 
symbols which evoke definite complexes of representations and emotions. The emotional 
aspect is ordinarily decisive, but the cognitive aspect is also very fundamental. In the 
most significant works of art these aspects are inseparable. The principal expressive 
means is the image, which may be synthetic but always remains concrete.  

Moving leftward across the table, we come next to philosophy, which is characterized by 
abstract-act, informal thinking. The combination of an extremely high degree of 
constructs among the concepts used and an insignificant degree of formalization requires 
great effort by the intuition and makes philosophical language unquestionably the most 
difficult of the tour types of language. When art raises abstract ideas it comes close to 
philosophy. On the other hand, philosophy will use the artistic image now and again to 
stimulate the intuition, and here it borders on art.  

On the bottom right half of our table we find the theoretical sciences, characterized by an 
abstract and formalized language. Science in general is characterized by formalized 
language; the difference between the descriptive and theoretical sciences lies in a 
different degree of use of concept-constructs. The language of descriptive science must 
be concrete and precise; formalization of syntax by itself does not play a large part, but 
rather acts as a criterion of the precision of the semantic system (logical consistency of 
definitions, completeness of classifications, and so on).  

The models of the world given by the descriptive sciences [bottom left of the table] are 
expressed in terms of ordinary neuronal concepts or concepts with a low degree of 
construct usage and, properly speaking, as models they are banal and monotypic: if some 
particular thing is done (for example, a trip to Australia or cutting open the abdominal 
cavity of a frog) it will be possible to see some other particular thing. On the other hand, 
the whole essence of the theoretical sciences is that they give fundamentally new models 
of reality: scientific theories based on concept-constructs not present at the neuronal 
levels. Here the formalization of syntax plays the decisive part. The most extreme of the 
theoretical sciences is mathematics, which contains the most complex constructs and uses 
a completely formalized language. Properly speaking mathematics is the formalized 
language used by the theoretical sciences.  
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Moving back up from the descriptive sciences we are again in the sphere of art. 
Somewhere on the border between the descriptive sciences and art lies the activity of the 
journalist or naturalist-writer. 

 
¾¾SCIENCE AND PHILOSOPHY 

ALTHOUGH THE LANGUAGE of science is formalized, scientists cannot restrict 
themselves to purely formal thinking. The use of a complete and finished theory does 
indeed demand formal operations that do not go outside the framework of a definite 
language, but the creation of a new theory always involves going beyond the formal 
system; it is always a metasystem transition of greater or lesser degree. 

Of course, we certainly cannot say that everyone who does not break down old 
formalisms is working on banal and uncreative things. This applies only to those who 
operate in accordance with already available algorithms, essentially performing the 
functions of a language machine. But fairly complex formal systems cannot be 
algorithmized and they offer a broad area for creative activity. Actions within the 
framework of such a system can be compared to playing chess. In order to play chess 
well one must study for a long time, memorize different variations and combinations, and 
acquire a specific chess intuition. In the same way the scientist who is dealing with a 
complex formalized language (that is to say, with mathematics either pure or applied) 
develops in himself, through long study and training, an intuition for his language, often a 
very narrow one, and obtains new theoretical results. This is, of course, activity which is 
both noble and creative.  

All the same, going beyond the old formalism is an even more serious creative step. If the 
scientists we were discussing above could be called chess-player-scientists, then the 
scientists who create new formalized languages and theories can be called philosopher-
scientists. We saw an example of these two types of scientist in our discussion of Fermat 
and Descartes in chapter 11. The concepts of new theories do not emerge in precise and 
formalized form from a vacuum. They become crystallized gradually, during a process of 
abstract but not formalized thinking--i.e., philosophical thinking. And whereas here too 
intuition is required, it is of a different type-- philosophical. ''The sciences,'' Descartes 
wrote in his Discours de la méthode ''borrow their principles from philosophy.''  

The creation of fundamental scientific theories lies in the borderline area between 
philosophy and science. As long as a scientist operates with conventional concepts within 
the framework of conventional formalized language he does not need philosophy. He is 
like the chess player who pictures the same pieces on the same board, but solves different 
problems. And he does obtain new results, relying on his intuition for chess. But in this 
he will never, in his game of chess, go beyond the limits inherent in his language. To 
improve language itself, to formalize what has not yet been formalized means to go into 
philosophy. If a new theory does not contain this element it is only a consequence of old 
theories. It can be said that the amount of what is new in any theory corresponds exactly 
to the amount of philosophy in it.  
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From the above discussion the importance of philosophy for the activity of the scientist is 
clear. In the Dialectic of Nature, F. Engels wrote: 

Naturalists imagine that they are free of philosophy when they ignore or downgrade it. But 
because they cannot take a step without thinking, and thinking demands logical categories 
and they borrow these categories uncritically either from the everyday, general 
consciousness of so-called educated people among whom the remnants of long-dead 
philosophical systems reign, from crumbs picked up in required university courses in 
philosophy (which are not only fragmentary views, but also a hodgepodge of the views of 
people affiliated with the most diverse and usually the most despicable schools), or from 
uncritical and unsystematic reading of every kind of philosophical works--in the end they 
are still subordinate to philosophy but, unfortunately, it is usually the most despicable 
philosophy and those who curse philosophy most of all are slaves to the worst vulgarized 
remnants of the worst philosophical systems.[1]  

That sounds amazingly modern! 

 
¾¾FORMALIZATION AND THE METASYSTEM 
TRANSITION 

THE CONVERSION of language, occurring as a result of formalization, into a reality 
independent of the human mind which creates it has far-reaching consequences. The just-
created language machine (theory), as a part of the human environment, becomes an 
object of study and description by means of the new language. In this way a metasystem 
transition takes place. In relation to the described language the new language is a 
metalanguage and the theories formulated in this language and concerned with theories in 
the language-object are metatheories. If the metalanguage is formalized, it may in turn 
become an object of study by means of the language of the next level and this 
metasystem transition can be repeated without restriction. 

In this way, the formalization of a language gives rise to the stairway effect (see chapter 
5). Just as mastering the general principles of making tools to influence objects gives rise 
to multiple repetitions of the metasystem transition and the creation of the hierarchical 
system of industrial production, so mastering the general principle of describing 
(modeling) reality by means of a formalized language gives rise to creation of the 
hierarchical system of formalized languages on which the modern exact sciences are 
based. Both hierarchies have great height. It is impossible to build a jet airplane with bare 
hands. The same thing is true of the tools needed to build an airplane. One must begin 
with the simplest implements and go through the whole hierarchy of complexity of 
instruments before reaching the airplane. In exactly the same way, in order to teach the 
savage quantum mechanics, one must begin with arithmetic. 
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¾¾THE LEITMOTIF OF THE NEW MATHEMATICS 

THE ESSENCE of what occurred in mathematics in the seventeenth century was that the 
general principle of using formalized language was mastered. This marked the beginning 
of movement up the stairway; it led to grandiose achievements and continues to the 
present day. It is true that this principle was not formulated so clearly then as now, and 
the term ''formalized language" did not appear until the twentieth century. But such a 
language was in fact used. As we saw. Descartes' reform was the first step along this 
path. The works of Descartes, in particular the quotations given above, show that this step 
was far from accidental: rather it followed from his method of learning the laws of nature 
which, if we put it in modern terms, is the method of creating models using formalized 
language. Descartes was aware of the universality of his method and its mathematical 
character. In the Regulae ad directionem ingenii he expresses his confidence that there 
must be ''some general science which explains everything related to order and measure 
without going into investigation of any particular objects.'' This science," he writes, 
should be called "universal mathematics."  

Another great mathematician-philosopher of the seventeenth century, G. Leibnitz (1646-
1716), understood fully the importance of the formalization of language and thinking. 
Throughout his life Leibnitz worked to develop a symbolic calculus to which he ,gave the 
Latin name characteristica universalis. Its goal was to express all clear human thoughts 
and reduce logical deduction to purely mechanical operations. In one of his early works 
Leibnitz states, ''The true method should be our Ariadne's thread, that is, a certain 
palpable and rough means which would guide the reason like lines in geometry and the 
forms of operations prescribed for students of arithmetic. Without this our reason could 
not make the long journey without getting off the road.'' This essentially points out the 
role of formalized language as the material fixer of concept-constructs--i.e., its main role. 
In his historical essay on the foundations of mathematics[2] N. Bourbaki writes: 

The many places in the works of Leibnitz where he mentions his grandiose project and the 
progress whic h would follow upon its realization show how clearly he understood 
formalized language as a pure combination of characters in which only their coupling is 
important, so that a machine will be able to derive all theorems and it will be possible to 
resolve all incomplete or mistaken understanding by simple calculation. Although such 
hopes might seem excessive, it must be admitted that it was in fact under the constant 
influence of them that Leibnitz created a significant share of his mathematical writings, 
above all his works on the symbolism of infinitesimal calculus. He himself was very well 
aware of this and openly linked his ideas of introducing indexes and determinants and his 
draft of the "geometric calculus" to his "charateristica.'' But he felt that his most significant 
work would be symbolic logic.... And although he was not able to create such calculus, at 
least he started work to carry out his intention three times.  

Leibnitz's ideas on the characteristica universalis. were not elaborated in his day. The 
work of formalizing logic did not get underway until the second half of the nineteenth 
century. But Leibnitz's ideas are testimony to the fact that the principle of describing 
reality by means of formalized logic is an inborn characteristic of European mathematics, 
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and has always been the source of its development, even though different authors have 
been aware of this to different degrees.  

It is not our purpose to set forth the history of modern mathematics or to give a detailed 
description of the concepts on which it is based; a separate book would be required for 
that. We shall have to be satisfied with a brief sketch that only touches that aspect of 
mathematics which is most interesting to us in this book--specifically, the system aspect.  

The leitmotif in the development of mathematics during the last three centuries has been 
the gradually deepening awareness of mathematics as a formalized language and the 
resulting growth of multiple levels in it, occurring through metasystem transitions of 
varying scale.  

We shall now review the most important manifestations of this process; they can be 
called variations on a basic theme, performed on different instruments and with different 
accompaniment. Simultaneously with upward growth in the edifice of mathematics there 
was an expansion of all its levels, including the lowest one--the level of applications . 

 
¾¾"NONEXISTENT" OBJECTS 

WE HAVE ALREADY spoken of ''impossible'' numbers--irrational, negative, and 
imaginary numbers. From the point of view of Platonism the use of such numbers is 
absolutely inadmissible and the corresponding symbols are meaningless. But Indian and 
Arabic mathematicians began to use them in a minor way, and then in European 
mathematics they finally and irreversibly took root and received reinforcement in the 
form of new ''nonexistent" objects, such as an infinitely remote point of a plane. This did 
not happen all at once, though. For a long time the possibility of obtaining correct results 
by working with ''nonexistent'' objects seemed amazing and mysterious. In 1612 the 
mathematician Clavius, discussing the rule that ''a minus times a minus yields a plus'' 
wrote: ''Here is manifested the weakness of human reason which is unable to understand 
how this can be true.'' In 1674, discussing a certain relation between complex numbers, 
Huygens remarked: ''There is something incomprehensible to us concealed here.'' A 
favorite expression of the early eighteenth century was the ''incomprehensible riddles of 
mathematics.'' Even Cauchy in 1821 had very dim notions of operations on complex 
quantities.[3]  

The last doubts and uncertainties related to uninterpreted objects were cleared up only 
with the introduction of the axiomatic approach to mathematical theories and final 
awareness of the ''linguistic nature'' of mathematics. We now feel that there is no more 
reason to be surprised at or opposed to the presence of such objects in mathematics than 
to be surprised at or opposed to the presence of parts in a car in addition to the four 
wheels, which are in direct contact with the ground and set the car in motion. Complex 
numbers and objects like them are the internal "wheels'' of mathematical models; they are 
connected with other ''wheels,'' but not directly with the ''ground,'' that is, the elements of 
nonlinguistic reality. Therefore one may go right on and operate with them as formal 
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objects (that is, characters written on paper) in accordance with their properties as defined 
by axioms. And there is no reason to grieve because you cannot go to the pastry shop and 
buy square root (-15) rolls. 

 
¾¾THE HIERARCHY OF THEORIES 

AWARENESS OF THE PRINCIPLE of describing reality by means of formalized 
language gives rise, as we have seen, to the stairway effect. Here is an example of a 
stairway consisting of three steps. Arithmetic is a theory we apply directly to such objects 
of nonlinguistic reality as apples, sheep, rubles, and kilograms of goods. In relation to it 
school algebra is a metatheory that knows only one reality--numbers and numerical 
equalities--while its letter language is a metalanguage in relation to the language of the 
numerals of arithmetic. Modern axiomatic algebra is a metatheory in relation to school 
algebra. It deals with certain objects (whose nature is not specified) and certain 
operations on these objects (the nature of the operations is also not specified). All 
conclusions are drawn from the characteristics of the operations. In the applications of 
axiomatic algebra to problems formulated in the language of school algebra, objects are 
interpreted as variables and operations are arithmetic operations. But modern algebra is 
applied with equal success to other branches of mathematics, for example to analysis and 
geometry.  

A thorough study of mathematical theory generates new mathematical theories which 
consider the initial theory in its different aspects. Therefore, each of these theories is in a 
certain sense simpler than the initial theory, just as the initial theory is simpler than 
reality, which it always considers in some certain aspect. The models are dismembered 
and a set of simpler models is isolated from the complex one. Formally speaking, new 
theories are just as universal as the initial theory: they can be applied to any objects, 
regardless of their nature, if they satisfy the axioms. With the axiomatic approach 
different mathematical theories form what is, strictly speaking, a hierarchy of complexity, 
not of control. When we consider the models that in fact express laws of nature (the ones 
used in applications of mathematics), however, we see that mathematical theories are 
very clearly divided into levels according to the nature of the objects to which they are 
actually applied. Arithmetic and elementary geometry are in direct contact with 
nonlinguistic reality, but a certain theory of groups is used to create new physical theories 
from which results expressed in the language of algebra and analysis are extracted and 
then "put in numbers": only after this are they matched with experimental results. This 
distribution of theories by levels corresponds overall to the order in which they arose 
historically, because they arose through successive metasystem transitions. The situation 
here is essentially the same as in the hierarchy of implements of production. It is possible 
to dig up the ground with a screwdriver, but that tool was not invented for this purpose 
and really is needed only by someone working with screws and bolts. Group theory can 
be illustrated by simple examples from everyday life or elementary mathematics, but it is 
really used only by mathematicians and theoretical physicists. A clerk in a store or an 
engineer in the field has no more use for group theory than the primitive has for a 
screwdriver. 
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¾THE AXIOMATIC METHOD 

ACCORDING TO THE ancient Greeks, the objects of mathematics had real existence in 
the "world of ideas.'' Some of the properties of these objects seemed in the mind to be 
absolutely indisputable; they were declared axioms. Others, which were not so obvious, 
had to be proved using the axioms. With such an approach there was no great need to 
precisely formulate and to completely list all the axioms: if some ''indisputable'' attribute 
of objects is used in a proof, it is not that important to know whether it has been included 
in a list of axioms or not: the truth of the property being proved does not suffer. Although 
Euclid did give a list of definitions and axioms (including postulates) in his Elements as 
we saw in chapter 10, now and again he used assumptions which are completely obvious 
intuitively but not included in the list of axioms. As for his definitions, there are more of 
them than there are objects defined, and they are completely unsuitable for use in the 
proof process. The list of definitions in the first book of the Elements begins as follows: 

1. The point is that which does not have parts.  
2. The line is a length without width.  
3. The ends of lines are points.  
4. A straight line is a line which lies the same relative to all its points.  

There are a total of 34 definitions. The Swiss geometer G. Lambert (1728-1777) noted in 
this regard: ''What Euclid offers in this abundance of definitions is something like a 
nomenclature. He really proceeds like, for example, a watchmaker or other artisan who is 
beginning to familiarize his apprentices with the names of the tools of his trade." 

The trend toward formalization of mathematics generated a trend toward refinement of 
definitions and axioms. Leibnitz called attention to the fact that Euclid's construction of 
an equilateral triangle relies on an assumption that does not follow from the definitions 
and axioms (we reviewed this construction in chapter 10). But it was only the creation of 
non-Euclidean geometry by N. 1. Lobachevsky (1792- 1856), J. Bolyai (1802-1860), and 
K. Gauss (1777- 1855) which brought universal recognition of the axiomatic approach to 
mathematical theories as the fundamental method of mathematics. At first Lobachevsky's 
"imaginary'' (conceptual) geometry, like all "imaginary'' phenomena in mathematics, 
encountered distrust and hostility. Soon the irrefutable fact of the existence of this 
geometry began to change the point of view of mathematicians concerning the relation 
between mathematical theory and reality. The mathematician could not refuse 
Lobachevsky's geometry the right to exist, because this geometry was proved to be 
noncontradictory. It is true that Lobachevsky's geometry contradicted our geometrical 
intuition, but with a sufficiently small parameter of spatial curvature it was 
indistinguishable from Euclidean geometry in small spatial volumes. As for the cosmic 
scale, it is not at all obvious that we can trust our intuition there, because our intuition 
forms under the influence of experience limited to small volumes. Thus we face two 
competing geometries and the question arises: which of them is ''true''?  

When we ponder this question it becomes clear that the word ''true'' is not placed in 
quotation marks without reason. Strictly speaking, the experiment cannot answer the 
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question of the truth or falsehood of geometry: it can only answer the question of its 
usefulness or lack of usefulness, or more precisely its degree of usefulness, for there are 
perhaps no theories which are completely useless. The experiment deals with physical, 
not geometric, concepts. When we turn to the experiment we are forced to give some 
kind of interpretation to geometric objects, for example to consider that straight lines are 
realized by light beams. If we discover that the sum of the angles of a triangle formed by 
light beams is less than 180 degrees, this in no way means that Euclidean geometry is 
"false.'' Possibly it is "true," but the light is propagated not along straight lines but along 
arcs of circumference or some other curved lines. To speak more precisely, this 
experiment will demonstrate that light beams cannot be considered as Euclidean straight 
lines. Euclidean geometry itself will not be refuted by this. The same thing applies, of 
course, to non-Euclidean geometry also. The experiment can answer the question of 
whether the light beam is an embodiment of the Euclidean straight line or the 
Lobachevsky straight line, and this of course is an important argument in choosing one 
geometry or the other as the basis for physical theories. But it does not take away the 
right to existence of the geometry which ''loses out.'' It may perhaps do better next time 
and prove very convenient for describing some other aspect of reality.  

Such considerations led to a reevaluation of the relative importance of the nature of 
mathematical objects and their properties (including relations as properties of pairs, 
groups of three, and other such objects). Whereas formerly objects seemed to have 
independent, real existence while their properties appeared to be something secondary 
and derived from their nature, now it was the properties of the objects, fixed in axioms, 
which became the basis by which to define the specific nature of the given mathematical 
theory while the objects lost all specific characteristics and, in general, lost their ''nature,'' 
which is to say, the intuitive representations necessarily bound up with them. In 
axiomatic theory the object is something which satisfies the axioms. The axiomatic 
approach finally took root at the turn of the twentieth century. Of course, intuition 
continued to be important as the basic (and perhaps only) tool of mathematical creativity, 
but it came to be considered that the final result of creative work was the completely 
formalized axiomatic theory which could be interpreted to apply to other mathematical 
theories or to nonlinguistic reality. 

 
¾¾METAMATHEMATICS 

THE FORMALIZATION of logic was begun (if we do not count Leibnitz's first 
attempts) in the mid-nineteenth century in the works of G. Boole (1815-1864) and was 
completed by the beginning of the twentieth century, primarily thanks to the work of 
Schroeder, C. S. Peirce, Frege, and Peano. The fundamental work of Russell and 
Whitehead, the Principia Mathematica, which came out in 1910, uses a formalized 
language which, disregarding insignificant variations, is still the generally accepted one 
today. We described this language in chapter 6, and now we shall give a short outline of 
the formalization of logical deduction. 
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There are several formal systems of logical deduction which are equivalent to one 
another. We shall discuss the most compact one. It uses just one logical connective, 
implication ⊃, and one quantifier, the universal quantifier ∀∀. But then it includes a 
logical constant which is represented by the symbol 0 and denotes an identically false 
statement. Using this constant it is possible to write the negation of statement p as p ⊃ 0, 
and from negation and implication it is easy to construct the other logical connectives. 
The quantifier of existence is expressed through negation and the quantifier of generality, 
so our compressed language is equivalent to the full language considered in chapter 6.  

The formal system (language machine) contains five axioms and two rules of inference. 
The axioms are the following: 

• A1. p ⊃ (q ⊃⊃=> p)  
• A2. [p ⊃ (q ⊃ r)] ⊃ [(p ⊃ q ) ⊃ (p ⊃ r)]  
• A3. [(p ⊃ 0) ⊃ 0] ⊃ p  
• A4. (∀∀x)[ p ⊃ q (x)] ⊃ [p ⊃ (∀∀x)q (x)]  
• A5. (∀∀x)q (x) ⊃ q (t)]  

In this p, q, and r are any propositions; in A4 and A5 the entry q(r) means that one of the 
free variables on which proposition q depends has been isolated: the entry q(t) means that 
some term t has been substituted for this variable: finally, in A4 it is assumed that 
variable r does not enter p as a free variable.  

It is easy to ascertain that these axioms correspond to our intuition. Axioms A1-A3 
involve only propositional calculus and their truth can be tested by the truth tables of 
logical connectives. It turns out that they are always true, regardless of the truth values 
assumed by propositions p, q, and r. A4 says that if q(r) follows for any r from 
proposition p which does not depend on r, the truth of q(r) for any r follows from p. A5 is 
in fact a definition of the universal quantifier: if q(r) is true for all r, then it is also true for 
any t.  

The rules of inference may be written concisely in the following way: 

 

In this notation the premises are above the line and the conclusion is below. The first rule 
(which traditionally bears the Latin name modus ponens) says that if there are two 
premises, proposition p and a proposition which affirms that q follows from p, then we 
deduce proposition p as the conclusion. The second rule, the rule of generalization, is 
based on the idea that if it has been possible to prove a certain proposition p(x), which 
contains free variable r, it may be concluded that the proposition will be true for any 
value of this variable.  

The finite sequence of formulas D = (d1, d2, . . . , dn) such that dn coincides with q and 
each formula dn is either a formula from a set of premises X, a logical axiom, or a 
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conclusion obtained according to the rules of inference from the preceding formulas dj is 
called the logical deduction of formula q from the set of formulas (premises) X. When we 
consider axiomatic theory, the aggregate of all axioms of the given theory figures as the 
set X and the logical deduction of a certain formula is its proof. 

Thus, the formula's proof itself became a formal object, a definite type of formula 
(sequence of logical statements) and as a result the possibility of purely syntactical 
investigation of proofs as characteristics of a certain language machine. This possibility 
was pointed out by the greatest mathematician of the twentieth century, David Hilbert 
(1862-1943), who with his students laid the foundations of the new school. Hilbert 
introduced the concept of the metalanguage and called the new school metamathematics. 
The term metasystem which we introduced at the start of the book (and which is now 
generally accepted) arose as a result of generalizing Hilbert's terminology. Indeed, the 
transition to investigating mathematical proofs by mathematical means is a brilliant 
example of a large-scale metasystem transition. 

The basic goal pursued by the program outlined by Hilbert was to prove that different 
systems of axioms were consistent (noncontradictory). A system of axioms is called 
contradictory if it is possible to deduce from it a certain formula q and its negation --q. It 
is easy to show that if there is at least one such formula, that is to say if the theory is 
contradictory, then any formula can be deduced from it. For an axiomatic theory, 
therefore, the question of the consistency of the system of axioms on which it is based is 
extremely important. This question admits a purely syntactical treatment: is it possible 
from the given formulas (strings of characters), following the given formal rules, to 
obtain a given formal result? This is the formulation of the question from which Hilbert 
began: it then turned out that there are also other important characteristics of theories 
which can be investigated by syntactical methods. Many very interesting and important 
results, primarily of a negative nature, were obtained in this way. 

 
¾¾THE FORMALIZATION OF SET THEORY 

THE CONCEPT of the aggregate or set is one of the most fundamental concepts given to 
us by nature: it precedes the concept of number. In its primary form it is not differentiated 
into the concepts of the finite and infinite sets, but this differentiation appears very early: 
in any case, in very ancient written documents we can already find the concept of infinity 
and the infinite set. This concept was used in mathematics from ancient times on, 
remaining purely intuitive, taken as self-explanatory and not subject to special 
consideration, until Georg Cantor (1845- 1918) developed his theory of sets in the 1870s. 
It soon became the basis of all mathematics. In Cantor the concept of the set (finite or 
infinite) continues to be intuitive. He defines it as follows: ''By a set we mean the joining 
into a single whole of objects which are clearly distinguishable by our intuition or 
thought.'' Of course, this "definition" is no more mathematical than Euclid's ''definition'' 
that "The point is that which does not have parts.'' But despite such imprecise starting 
points, Cantor (once again, like the Greek geometers) created a harmonious and logically 
consistent theory with which he was able to put the basic concepts and proofs of 
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mathematical analysis into remarkable order. (''It is simply amazing,'' writes Bourbaki, 
''what clarity is gradually acquired in his writing by concepts which, it seemed, were 
hopelessly confused in the classical conception of the "continuum.")[4] In set theory 
mathematicians received a uniform method of creating new concept-constructs and 
obtaining proofs of their properties. For example, the real number is the set of all 
sequences of rational numbers which have a common limit: the line segment is a set of 
real numbers: the function is the set of pairs (x, f) where x and f are real numbers.  

By the end of the nineteenth century Cantor's set theory had become recognized and was 
naturally combined with the axiomatic method. But then the famous ''crisis of the 
foundations'' of mathematics burst forth and continued for three decades. ''Paradoxes,'' 
which is to say constructions leading to contradiction, were found in set theory. The first 
paradox was discovered by Burali-Forti in 1897 and several others appeared later. As an 
example we will give Russell's paradox (1905), which can be presented using only the 
primary concepts of set theory and at the same time not violating the requirements of 
mathematical strictness. This is the paradox. Let us define M as the set of all those sets 
which do not contain themselves as an element. It would seem that this is an entirely 
proper definition because the formation of sets from sets is one of the bases of Cantor's 
theory. However, it leads to a contradiction. In order to make this clearer we shall use 
P(x) to signify the property of set X of being an element of itself. In symbolic form this 
will be 

P(x) h x cc  x              (1) 

Then, according to the definition of set M, all its elements X gave the property which is 
the opposite of P(x): 

x cc  M h -P(x)             (2) 

Then we put the question: is set M itself an element, that is, is P(M) true? If P(M) is true, 
then M cc  M according to definition (1). But in this case, substituting M for X in 
proposition (2) we receive -P(x) , for if M is included in set M, then according to the 
definition of the latter it should not have property P. On the other hand, if P(M) is false, 
then -P(M) occurs; then according to (2) M should be included in M, that is, P(M) is true. 
Thus, P(M) cannot be either true or false. From the point of view of formal logic we have 
proved two implications: 

P(M) ⊃⊃ -P(M) 

-P(M) ⊃⊃  =>P(M) 

If the implication is expressed through negation and disjunction and we use the property 
of disjunction AVA = A, the first statement will become -P(M) while the second will 
become P(M). Therefore, a formal contradiction takes place and therefore anything you 
like may be deduced from set theory! 
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The paradoxes threatened set theory and the mathematical analysis based on it. Several 
philosophical-mathematical schools emerged which proposed different ways out of this 
blind alley. The most radical school was headed by Brouwer and came to be called 
intuitionism; this school demanded not only a complete rejection of Cantor's set theory, 
but also a radical revision of logic. Intuitionist mathematics proved quite complex and 
difficult to develop, and because it threw classical analysis onto the scrap heap most 
mathematicians found this position unacceptable. ''No one can drive us from the heaven 
which Cantor created for us,'' Hilbert announced, and he found a solution which kept the 
basic content of set theory and at the same time eliminated the paradoxes and 
contradictions. With his followers Hilbert formulated the main channel along which the 
current of mathematical thought flowed.  

Hilbert's solution corresponds entirely to the spirit of development of European 
mathematics. Whereas Cantor viewed his theory from a profoundly Platonist standpoint, 
as an investigation of the attributes of really existing and actually infinite sets, according 
to Hilbert the sets must be viewed as simply certain objects that satisfy axioms, while the 
axioms must be formulated so that definitions leading to paradoxes become impossible. 
The first system of set theory axioms which did not give rise to contradictions was 
proposed in 1908 by Zermelo and later modified. Other systems were also proposed, but 
the attitude toward set theory remained unchanged. In modern mathematics set theory 
plays the role of the frame, the skeleton which joins all its parts into a single whole but 
cannot be seen from the outside and does not come in direct contact with the external 
world. This situation can be truly understood and the formal and contentual aspects of 
mathematics combined only from the "linguistic" point of view regarding mathematics. 
This point of view, which we have followed persistently throughout this book, leads to 
the following conception. There are no actually infinite sets in reality or in our 
imagination. The only thing we can find in our imagination is the notion of potential 
infinity--that is, the possibility of repeating a certain act without limitation. Here we must 
agree fully with the intuitionist criticism of Cantor's set theory and give due credit to its 
insight and profundity. To use set theory in the way it is used by modern mathematics, 
however, it is not at all necessary to force one's imagination and try to picture actual 
infinity. The "sets'' which are used in mathematics are simply symbols, linguistic objects 
used to construct models of reality. The postulated attributes of these objects correspond 
partially to intuitive concepts of aggregateness and potential infinity; therefore intuition 
helps to some extent in the development of set theory, but sometimes it also deceives. 
Each new mathematical (linguistic) object is defined as a ''set'' constructed in some 
particular way. This definition has no significance for relating the object to the external 
world, that is for interpreting it: it is needed only to coordinate it with the frame of 
mathematics, to mesh the internal wheels of mathematical models. So the language of set 
theory is in fact a metalanguage in relation to the language of contentual mathematics, 
and in this respect it is similar to the language of logic. If logic is the theory of proving 
mathematical statements, then set theory is the theory of constructing mathematical 
linguistic objects. 

Precisely why did the intuitive concept of the set form the basis of mathematical 
construction? To define a newly introduced mathematical object means to point out its 
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semantic ties with objects introduced before. With the exception of the trivial case where 
we are talking about redesignation, replacing a sign with a sign, there are always many 
such ties, and many objects introduced earlier can participate in them. And so, instead of 
saying that the new object is related in such-and-such ways to such-and-such old objects, 
it is said that the new object is a set constructed of the old objects in such-and-such a 
manner. For example, a rational number is the result of dividing two natural numbers: the 
numerator by the denominator. The number 5/7 is object X such that the value of the 
function "numerator" (X) is 5 and the value of the function ''denominator'' (X) is 7. In 
mathematics, however, the rational number is defined simply as a pair of natural 
numbers. In exactly the same way it would be necessary to speak only of the realization 
of a real number by different sequences of rational numbers, understanding this to mean a 
definite semantic relation between the new and old linguistic objects. Instead of this, it is 
said that the real number is a set of sequences of rational numbers. At the present time the 
terminology should be considered a vestige of Platonic views according to which what is 
important is not the linguistic objects but the elements of ''ideal reality" concealed behind 
them, and therefore an object must be defined as a "real'' set to acquire the right to exist. 
The idea of the set was promoted to "executive work" in mathematics as one of the 
aspects of the relation of name and meaning (specifically, that the meaning is usually a 
construction which includes a number of elements), and it is hardly necessary to prove 
that the relation of name and meaning always has been and always will be the basis of 
linguistic construction. 

 
¾¾BOURBAKI'S TREATISE 

AT THE CONCLUSION of this chapter we cannot help saying a few words about 
Bourbaki's multivolume treatise entitled Eléments de mathematique. Nicholas Bourbaki 
is a collective pseudonym used by a group of prominent mathematicians, primarily 
French, who joined together in the 1930s. Eléments de mathematique started publication 
in 1939.  

Specialists from different fields of mathematics joined together in the Bourbaki group on 
the basis of a conception of mathematics as a formalized language. The goal of the 
treatise was to present all the most important achievements of mathematics from this 
point of view and to represent mathematics as one formalized language. And although 
Bourbaki's treatise has been criticized by some mathematicians for various reasons, it is 
unquestionably an important milestone in the development of mathematics along the path 
of self-awareness.  

Bourbaki's conception was set forth in layman's terms in the article ''The Architecture of 
Mathematics.'' At the start of the article the author asks: is mathematics turning into a 
tower of Babel, into an accumulation of isolated disciplines? Are we dealing with one 
mathematics or with several? The answer given to this question is as follows. Modern 
axiomatic mathematics is one formalized language that expresses abstract mathematical 
structures that are not distinct, independent objects but rather form a hierarchical system. 
By a ''structure'' Bourbaki means a certain number of relations among objects which 
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possess definite properties. Leaving the objects completely undefined and formulating the 
properties of relations in the form of axioms and then extracting the consequences from 
them according to the rules of logical inference, we obtain an axiomatic theory of the 
given structure. Translated into our language, a structure is the semantic aspect of a 
mathematical model. Several types of fundamental generating structures may be 
identified. Among them are algebraic structures (which reflect the properties of the 
composition of objects), structures of order, and topological structures (properties related 
to the concepts of contiguity, limit, and continuity). In addition to the most general 
structure of the given type--that is, the structure with the smallest number of axioms--we 
find in each type of generating structure structures obtained by including additional 
axioms. Thus, group theory includes the theory of finite groups, the theory of abelian 
groups, and the theory of finite abelian groups. Combining generating structures produces 
complex structures such as, for example, topological algebra. In this way a hierarchy of 
structures emerges. 

How is the axiomatic method employed in creative mathematics? This is where, 
Bourbaki writes, the axiomatic method is closest to the experimental method. Following 
Descartes, it "divides difficulties in order to resolve them better.'' In proofs of a complex 
theory it tries to break down the main groups of arguments involved and, taking them 
separately, deduce consequences from them (the dismemberment of models or structures, 
which we discussed above). Then, returning to the initial theory, it again combines the 
structures which have been identified beforehand and studies how they interact with one 
another. We conclude with this citation: 

From the axiomatic point of view, mathematics appears thus as a storehouse of abstract 
forms--the mathematical structures: and it so happens--without our knowing why--that 
certain aspects of empirical reality fit themselves into these forms, as if through a kind of 
preadaptation. Of course, it cannot be denied that most of these forms had originally a 
very definite intuitive content; but it is exactly by deliberately throwing out this content 
that it has been possible to give these forms all the power which they were capable of 
displaying and to prepare them for new interpretations and for the development of their 
full power.[5]  

 

[1] Engels, F. Dialektika prirody (The Dialectic of Nature). Gospolitizdat Publishing 
House, 1955, p. 165. 

[2] Bourbaki, N. Elements d'histoire des mathematiques. Paris: Hermann. The quote is 
from the first essay, in the session "Formalization of Logic." 

[3] This opinion and the quotations cited above were taken from H. Weyl's book The 
Philo.sophy of Mathematics (Russian edition O filosofi matematiki. Moscow-Leningrad, 
1934). 

[4] Bourbaki, fisrt essay, section "Set Theory." 
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[5] Bourbaki, "The Architecture of Mathematiques."  
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CHAPTER THIRTEEN 
  

Science and Metascience 

 
¾¾EXPERIMENTAL PHYSICS 

WHEN THE FOUNDATIONS of the new mathematics were being constructed at the 
turn of the seventeenth century, the basic principles of experimental physics were also 
developed. Galileo (1564-1642) played a leading role in this process. He not only made 
numerous discoveries and inventions which constituted an epoch in themselves, but also--
in his books, letters, and conversations--taught his contemporaries a new method of 
acquiring knowledge. Galileo's influence on the minds of others was enormous. Francis 
Bacon (1566-1626) was also important in establishing experimental science. He gave a 
philosophical analysis of scientific knowledge and the inductive method.  

Unlike the ancient Greeks, the European scientists were by no means contemptuous of 
empirical knowledge and practical activity. At the same time they were full masters of 
the theoretical heritage of the Greeks and had already begun making their own 
discoveries. This combination engendered the new method. "Those who have treated of 
the sciences,'' Bacon writes. 

"have been either empirics or dogmatical. The former like ants only heap up and use their 
store, the latter like spiders spin out the ir own webs. The bee, a mean between both, 
extracts matter from the flowers of the garden and the field, but works and fashions it by its 
own efforts. The true labor of philosophy resembles hers, for it neither relies entirely nor 
principally on the powers of the mind, nor yet lays up in the memory the matter afforded 
by the experiments of natural history and mechanics in its raw state, but changes and works 
it in the understanding. We have good reason, therefore, to derive hope from a closer and 
purer alliance of these faculties (the experimental and rational) than has yet been 
attempted.[1] 

 
¾¾THE SCIENTIFIC METHOD 

THE CONCEPT of the experiment assumes the existence of a theory. Without a theory 
there is no experiment: there is only observation. From the cybernetic (systems) point of 
view the experiment is a controlled observation: the controlling system is the scientific 
method, which relies on theory and dictates the organization of the experiment. Thus, the 
transition from simple observation to the experiment is a metasystem transition in the 
realm of experience and it is the first aspect of the emergence of the scientific method. Its 
second aspect is awareness of the scientific method as something standing above the 
theory--in other words, mastering the general principle of describing reality by means of 
formalized language, which we discussed in the previous chapter. As a whole, the 
emergence of the scientific method is one metasystem transition which creates a new 
level of control, including control of observation (organization of the experiment) and 
control of language (development of theory). The new metasystem is what we mean by 
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science in the modern sense of the word. Close direct and feedback ties are established 
between the experiment and the theory within this metasystem. Bacon describes them this 
way: ''Our course and method . . . are such as not to deduce effects from effects, nor 
experiments from experiments (as the empirics do), but in our capacity of legitimate 
interpreters of nature, to deduce causes and axioms from effects and experiments.''[2]  

We can now give a final answer to the question: what happened in Europe in the early 
seventeenth century? A very major metasystem transition took place, engulfing both 
linguistic and nonlinguistic activity. In the sphere of nonlinguistic activity it took shape 
as the experimental method. In the realm of linguistic activity it gave rise to the new 
mathematics, which has developed by metasystem transitions (the stairway effect) in the 
direction of ever-deeper self-awareness as a formalized language used to create models of 
reality. We described this process in the preceding chapter without going beyond 
mathematics. We can now complete this description by showing the system within which 
this process becomes possible. This system is science as a whole with the scientific 
method as its control device--that is, the aggregate of all human beings engaged in 
science who have mastered the scientific method together with all the objects used by 
them. When we were introducing the concept of the stairway effect in chapter 5 we 
pointed out that it takes place in the case where there is a metasystem Y which continues 
to be a metasystem in relation to systems of the series X, X', X”,. . . , where each 
successive system is formed by a metasystem transition from the preceding one and, 
while remaining a metasystem, at the same time insures the possibility of metasystem 
transitions of smaller scale from X to X', from X"  to X"', and so on. Such a system Y 
possesses inner potential for development: we called it an ultrametasystem. In the 
development of physical production ultrametasystem Y is the aggregate of human beings 
who have the ability to convert means of labor into objects of labor. In the development 
of the exact sciences ultrametasystem Y is the aggregate of people who have mastered the 
scientific method--that is, who have the ability to create models of reality using 
formalized language.  

We have seen that in Descartes the scientific method, taken in its linguistic aspect, served 
as a lever for the reform of mathematics. But Descartes did not just reform mathematics; 
while developing the same aspect of the same scientific method he created a set of 
theoretical models or hypotheses to explain physical, cosmic, and biological phenomena. 
If Galileo may be called the founder of experimental physics and Bacon its ideologist, 
then Descartes was both the founder and ideologist of theoretical physics. It is true that 
Descartes' models were purely mechanical (there could be no other models at that time) 
and imperfect, and most of them soon became obsolete. But those imperfections are not 
so important as the fact that Descartes established the principle of constructing theoretical 
models. In the nineteenth century, when the first knowledge of physics was accumulated 
and the mathematical apparatus was refined, this principle demonstrated its full utility. 

It will not be possible here to give even a brief survey of the evolution of the ideas of 
physics and its achievements or the ideas and achievements of the other natural sciences. 
We shall dwell on two aspects of the scientific method which are universally important, 
namely the role of general principles in science and the criteria for selecting scientific 



  

 229

theories, and then we shall consider certain consequences of the advances of modern 
physics in light of their great importance for the entire system of science and for our 
overall view of the world. At the conclusion of this chapter we shall discuss some 
prospects for the development of the scientific method. 

 
¾¾THE ROLE OF GENERAL PRINCIPLES 

BACON SET FORTH a program of gradual introduction of more and more general 
statements (''causes and axioms'') beginning with unique empirical data. He called this 
process induction (that is to say, introduction) as distinguished from deduction of less 
general theoretical statements from more general principles. Bacon was a great opponent 
of general principles; he said that the mind does not need wings to raise it aloft, but lead 
to hold it on the ground. During the period of the ''initial accumulation'' of empirical facts 
and very simple empirical rules this conception still had some justification (it was also a 
counterbalance to Medieval Scholasticism), but it turned out later that the mind still needs 
wings more than lead. In any case, that is true in theoretical physics. To confirm this let 
us turn to Albert Einstein. In his article entitled ''The Principles of Theoretical Physics,'' 
he writes: 

To apply his method the theoretician needs a foundation of certain general assumptions, 
so-called principles, from which he can deduce consequences. His activity thus breaks into 
two stages. In the first place he must search for the principles, and in the second place he 
must develop the consequences which follow from these principles. School has given him 
good weapons to perform the second task. Therefore, if the first task has been 
accomplished for a certain area, that is to say a certain aggregate of interdependencies, the 
consequences will not be long in coming. The first task mentioned, establishing the 
principles which can serve as the basis for deduction, is categorically different. Here there 
is no method which can be taught and systematically applied to achieve the goal. What the 
investigator must do is more like finding in nature precisely formulated general principles 
which reflect definite general characteristics of the set of experimentally determined 
facts.[3] 

In another article entitled ''Physics and Reality,''[4] Einstein speaks very categorically: 
''Physics is a developing logical system of thinking whose foundations cannot be obtained 
by extraction from past experience according to some inductive methods, but come only 
by free fantasy.'' The words about "free fantasy" do not mean, of course, that general 
principles do not depend on experience at all but rather that they are not determined 
uniquely by experience. The example Einstein often gave is that Newton's celestial 
mechanics and Einstein's general theory of relativity were constructed from the same 
facts of experience. But they began from completely different (in a certain sense even 
diametrically opposed) general principles, which is also seen in their different 
mathematical apparatuses.  

As long as the edifice of theoretical physics had just a few ''stories'' and the consequences 
of general principles could be deduced easily and unambiguously, people were not aware 
that they had a certain freedom in establishing the principles. The distance between the 
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trial and the error (or the success) in the trial and error method was so slight that they did 
not notice that they were using this method, but rather thought that they were deducing 
(although it was called inducing, not deducing) principles directly from experience. 
Einstein writes: ''Newton, the creator of the first vast, productive system of theoretical 
physics still thought that the basic concepts and principles of his theory followed from 
experience. Apparently this is how his statement, 'Hypotheses non fingo' (I do not 
compose hypotheses) must be understood.'' With time, however, theoretical physics 
changed into a multistory construction and the deduction of consequences from general 
principles became a complex and not always unambiguous business, for it often proved 
necessary in the process of deduction to make additional assumptions, most frequently 
"unprincipled'' simplifications without which the reduction to numerical calculation 
would have been impossible. Then it became clear that between the general principles of 
the theory and the facts permitting direct testing in experience there is a profound 
difference: the former are free constructions of human reason, while the latter are the raw 
material reason receives from nature. True, we should not overestimate the profundity of 
this difference. If we abstract from human affairs and strivings it will appear that the 
difference between theories and facts disappears: both are certain reflections or models of 
the reality outside human beings. The difference lies in the level at which the models 
originate. The facts, if they are completely ''deideologized,'' are determined by the effect 
of the external world on the human nervous system which we are compelled (for the 
present) to consider a system that does not permit alteration, and therefore we relate to 
facts as the primary reality. Theories are models embodied in linguistic objects. They are 
entirely in our power and thus we can throw out one theory and replace it with another 
just as easily as we replace an obsolete tool with a more highly refined one.  

Growth in the abstractness (construct quality) of the general principles of physical 
theories and their remoteness from the immediate facts of experience leads to a situation 
in which it becomes increasingly more difficult using the trial and error method to find a 
trial which has a chance of success. Reason begins to experience an acute need for wings 
to soar with, as Einstein too is saying. On the other hand, the increase in the distance 
between general principles and verifiable consequences makes the general principles 
invulnerable to experience within certain limits, which was also frequently pointed out by 
the classics of modern physics. Upon finding a discrepancy between the consequences of 
a theory and the experiment, the investigator faces two alternatives: look for the causes of 
the discrepancy in the general principles of the theory or look for them somewhere 
between the principles and the concrete consequences. In view of the great value of 
general principles and the significant expenditures required to revise the theory as a 
whole, the second path is always tried first. If the deduction of consequences from the 
general principles can be modified so that they agree with the experiment, and if this is 
done in a sufficiently elegant manner, everyone is appeased and the problem is 
considered solved. But sometimes the modification very clearly appears to be a patch, 
and sometimes patches are even placed on top of patches and the theory begins to tear 
open at the seams: nonetheless, its deductions are in agreement with the data of 
experience and continue to have their predictive force. Then these questions arise: what 
attitude should be taken toward the general principles of such a theory? Should we try to 
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replace them with some other principles? What point in the ''patchwork'' process, how 
much ''patching,'' justifies discarding the old theory? 

 
¾¾CRITERIA FOR THE SELECTION OF THEORIES 

FIRST OF ALL let us note that a clear awareness of scientific theories as linguistic 
models of reality substantially lessens the impact of the competition between scientific 
theories and the naive point of view (related to Platonism) according to which the 
linguistic objects of a theory only express some certain reality, and therefore each theory 
is either ''really'' true if this reality actually exists or "really'' false if this reality is 
fabricated. This point of view is engendered by transferring the status of the language of 
concrete facts to the language of concept-constructs. When we compare two competing 
statements such as ''There is pure alcohol in this glass'' and ''There is pure water in this 
glass,'' we know that these statements permit an experimental check and that the one 
which is not confirmed loses all meaning as a model and all truth value. It is in fact false 
and only false. Things are entirely different with statements which express the general 
principles of scientific theories. Many verifiable consequences are deduced from them 
and if some of these prove false it is customary to say that the initial principles (or 
methods of deducing consequences) are not applicable to the given sphere of experience; 
it is usually possible to establish formal criteria of applicability. In a certain sense, 
therefore, general principles are ''always true'': to be more precise, the concepts of truth 
and falsehood are not applicable to them, but the concept of their greater or lesser utility 
for describing real facts is applicable. Like the axioms of mathematics, the general 
principles of physics are abstract forms into which we attempt to squeeze natural 
phenomena. Competing principles stand out by how well they permit this to be done. But 
what does ''well'' mean'? 

If a theory is a model of reality, then obviously it is better if its sphere of application is 
broader and if it can make more predictions. Thus, the criterion of the generality and 
predictive power of a theory is the primary one for comparing theories. A second 
criterion is simplicity; because theories are models intended for use by people they are 
obviously better when they are simpler to use. 

If scientific theories were viewed as something stable, not subject to elaboration and 
improvement, it would perhaps be difficult to suggest any other criteria. But the human 
race is continuously elaborating and improving its theories, which gives rise to one more 
criterion, the dynamic criterion, which is also the decisive one. In The Philosophy of 
Science this criterion was well stated by Phillip Frank: 

If we investigate which theories have actually been preferred because of their simplicity, 
we find that the decisive reason for acceptance has been neither economic nor esthetic, but 
rather what has often been called "dynamic.'' This means that the theory was preferred that 
proved to make science more "dynamic," i.e., more fit to expand into unknown territory. 
This can be made clear by using an example that we have invoked frequently in this book: 
the struggle between the Copernican and the Ptolemaic systems. In the period between 
Copernicus and Newton a great many reasons had been invoked on behalf of one or the 
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other system. Eventually, however, Newton advanced his theory of motion, which 
accounted excellently for all motions of celestial bodies (e.g., comets), while Copernicus as 
well as Ptolemy had accounted for only the motions in our planetary system. Even in this 
restricted domain, they neglected the "perturbations'' that are due to the interactions 
between the planets. However, Newton's laws originated in generalizations of the 
Copernican theory, and we can hardly imagine how they could have been formulated if he 
had started with the Ptolemaic system. In this respect and in many others, the Copernican 
theory was the more ''dynamic'' one or, in other words, had the greater heuristic value. We 
can say that the Copernican theory was mathematically "simpler'' and also more dynamic 
than the Ptolemaic theory.[5] 

The esthetic criterion or the criterion of the beauty of a theory, which is mentioned by 
Frank, is difficult to defend as one independent of other criteria. But it becomes very 
important as an intuitive synthesis of all the above-mentioned criteria. To a scientist a 
theory seems beautiful if it is sufficiently general and simple and he feels that it will 
prove to be dynamic. Of course, he may be wrong in this too. 

 
¾¾THE PHYSICS OF THE MICROWORLD 

IN BOTH PHYSICS and pure mathematics, as the abstractness of the theories increased 
the understanding of their linguistic nature became solidly rooted. The decisive impetus 
was given to this process in the early twentieth century when physics entered the world of 
atoms and elementary particles, and quantum mechanics and the theory of relativity were 
created. Quantum mechanics played a particularly large part. This theory cannot be 
understood at all unless one constantly recalls that it is just a linguistic model of the 
microworld, not a representation of how it would "really" look if it were possible to see it 
through a microscope with monstrous powers of magnification; there is no such 
representation nor can there be one. Therefore the notion of the theory as a linguistic 
model of reality became a constituent part of modern physics, essential for successful 
work by physicists. Consequently their attitude toward the nature of their work also 
began to change. Formerly the theoretical physicist felt himself to be the discoverer of 
something which existed before him and was independent of him, like a navigator 
discovering new lands; now he feels he is more a creator of something new, like a master 
artisan who creates new buildings, machines, and tools and has complete mastery of his 
own tools. This change has even appeared in our way of talking. Traditionally, Newton is 
said to have ''discovered'' [otkryl] infinitesimal calculus and celestial mechanics; when we 
speak of a scientist today we say that he has ''created'' [sozdal], "proposed" [predlozhil], 
or ''worked out'' [razrabotal] a new theory. The expression ''discovered'' sounds archaic. 
Of course, this in no way diminishes the merits of the theoreticians, for creation is as 
honorable and inspiring an occupation as discovery. 

But why did quantum mechanics require awareness of the "linguistic quality'' of theories? 

According to the initial atomistic conception, atoms were simply very small particles of 
matter, small corpuscles which had, in particular, a definite color and shape which 
determined the color and physical properties of larger accumulations of atoms. The 
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atomic physics of the early tenth century transferred the concept of indivisibility from the 
atom to elementary particles--the electron, the proton, and soon after the neutron. The 
word ''atom'' began to mean a construction consisting of an atomic nucleus (according to 
the initial hypothesis it had been an accumulation of protons and electrons) around which 
electrons revolved like planets around the sun. This representation of the structure of 
matter was considered hypothetical but extremely plausible. The hypothetical quality was 
understood in the sense discussed above: the planetary model of the atom must be either 
true or false. If it is true (and there was virtually no doubt of this) then the electrons 
''really'' are small particles of matter which describe certain trajectories around a nucleus. 
Of course, in comparison with the atoms of the ancients, the elementary particles were 
already beginning to lose some properties which would seem to be absolutely essential 
for particles of matter. It became clear that the concept of color had absolutely no 
application to electrons and protons. It was not that we did not know what color they 
were; the question was simply meaningless, for color is the result of interaction with light 
by at least the whole atom, and more precisely by an accumulation of many atoms. 
Doubts also arose regarding the concepts of the shape and dimensions of electrons. But 
the most sacred element of the representation of the material particle, that the particle has 
a definite position in space at each moment, remained undoubted and taken for granted. 

 
¾¾THE UNCERTAINTY RELATION 

QUANTUM MECHANICS destroyed this notion, through the force of new experimental 
data. It turned out that under certain conditions elementary particles behave like waves, 
not particles; in this case they are not ''blurred'' over a large area of space, but keep their 
small dimensions and discreteness. The only thing that is blurred is the probability of 
finding them at a particular point in space. 

As an illustration of this let us consider figure 13.1.  

 

Figure 13.1.  Diffraction of electrons. 

The figure shows an electron gun which sends electrons at a certain velocity toward a 
diaphragm behind which stands a screen. The diaphragm is made of a material which is 
impervious to electrons, but it has two holes through which electrons pass to strike the 
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screen. The screen is coated with a substance that fluoresces when acted upon by 
electrons, so that there is a flash at the place struck by an electron. The stream of 
electrons from the gun is sufficiently infrequent so that each electron passes through the 
diaphragm and is recorded on the screen independently of others. The distance between 
the holes in the diaphragm is many times greater than the dimensions of the electrons 
(according to any estimate of their size) but comparable with the quantity h/p where h is 
the Planck constant and p is the momentum of the electron--i.e., the product of its 
velocity and mass. These are the conditions of the experiment. The result of the 
experiment is a distribution of flashes on the screen. The first conclusion from analyzing 
the results of the experiment is the following: electrons strike different points of the 
screen and it is impossible to predict which point each electron will strike. The only thing 
that can be predicted is the probability that a particular electron will strike a particular 
point--that is, the average density of flashes after a very large number of electrons have 
struck the screen. But this is just half the trouble. One can imagine that different electrons 
pass through different parts of the hole in the diaphragm, experience effects of differing 
force from the edges of the holes, and therefore are deflected differently. The real 
troubles arise when we begin to investigate the average density of flashes on the screen 
and compare it with the results which are obtained when we close one of the holes in the 
diaphragm. If an electron is a small particle of matter, then when it reaches the region of 
the diaphragm it is either absorbed or passes through one of the holes. Because the holes 
in the diaphragm are set symmetrically relative to the electron gun, on the average half of 
the electrons pass through each hole. This means that if we close one hole and pass 1 
million electrons through the diaphragm then close the second hole and open the first and 
pass 1 million more electrons through, we should receive the same average density of 
flashes as if we were to pass 2 million electrons through the diaphragm with two holes 
open. But it turns out that this is not the case! With two holes open the distribution is 
different; it contains maximums and minimums as is the case in diffraction of waves. 

The average density of flashes can be calculated by means of quantum mechanics, 
relating the electrons to the so-called wave function, which is a certain imaginary field 
whose intensity is proportional to the probability of the observed events.  

It would take too much space to describe all the attempts, none successful, which have 
been made to correlate the representation of the electron as a ''conventional" particle 
(such particles have come to be called classical  as opposed to quantum particles) with the 
experimental data on electron behavior. There is a vast literature, both specialized and 
popular, devoted to this question. The following two things have become clear. In the 
first place. if we simultaneously measure the coordinate of a quantum particle (any such 
particle, not necessarily an electron) on a certain axis X and the momentum in this 
direction p, the errors of measurement, which we designate Äx and Äp respectively, 
comply with Heisenberg's uncertainty relation: 

Äx Äp  ≥ h 

No clever tricks can get around this relation. When we try to measure coordinate X more 
exactly the spread of magnitudes of momentum p is larger, and vice versa. The 
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uncertainty relation is a universally true law of nature, but because the Planck constant h 
is very small, the relation plays no part in measurements of bodies of macroscopic size.  

In the second place, the notion that quantum particles really move along certain 
completely definite trajectories--which is to say at each moment they really have a 
completely definite coordinate and velocity (and therefore also momentum) which we are 
simply unable to measure exactly--runs up against insurmountable logical difficulties. On 
the other hand, the refusal on principle to ascribe a real trajectory to the quantum particle 
and adoption of the tenet that the most complete description of the state of a particle is an 
indication of its wave function yields a logically flawless, mathematically simple and 
elegant theory which fits brilliantly with experimental facts; specifically. the uncertainty 
relation follows from it immediately. This is the theory of quantum mechanics. The work 
of Niels Bohr (1885-1962) the greatest scientist-philosopher of our time, played the 
major part in clarifying the physical and logical foundations of quantum mechanics and 
interpreting it philosophically. 

 
¾¾GRAPHIC AND SYMBOLIC MODELS 

SO AN ELECTRON does not have a trajectory. The most that can be said of an electron 
is an indication of its wave function whose square will give us the probability of finding 
the electron in the proximity of a particular point in space. But at the same time we say 
that the electron is a material particle of definite (and very small) dimensions. Combining 
these two representations, as was demanded by observed facts, proved a very difficult 
matter and even today there are still people who reject the standard interpretation of 
quantum mechanics (which has been adopted by a large majority of physicists following 
the Bohr school) and want to give the quantum particles back their trajectories no matter 
what. Where does such persistence come from? After all, the expropriation of color from 
the electrons was completely painless and, from a logical point of view, recognizing that 
the concept of trajectory cannot apply to the electron is no different in principle from 
recognizing that the concept of color does not apply. The difference here is that when we 
reject the concept of color we are being a little bit hypocritical. We say that the electron 
has no color, but we ourselves picture it as a little greyish (or shiny, it is a matter of taste) 
sphere. We substitute an arbitrary color for the absence of color and this does not hinder 
us at all in using our model. But this trick does not work in relation to position in space. 
The notion of an electron which is located somewhere at every moment hinders 
understanding of quantum mechanics and comes into contradiction with experimental 
data. Here we are forced to reject completely the graphic geometric representation of 
particle movement. And this is what causes the painful reaction. We are so accustomed to 
associating the space-time picture with true reality, with what exists objectively and 
independently of us, that it is very difficult for us to believe in an objective reality which 
does not fit within this conception. And we ask ourselves again and again: after all, if the 
electron is not ''blurred'' in space, then it must really be somewhere, mustn't it?  

It requires real mental effort to recognize and feel the meaninglessness of this question. 
First we must be aware that all our knowledge and theories are secondary models of 
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reality, that is, models of the primary models which are the data of sensory experience. 
These data bear the ineradicable imprint of the organization of our nervous system and 
because space-time concepts are set in the very lowest levels of the nervous system, none 
of our perceptions and representations, none of the products of our imagination, can go 
outside the framework of space-time pictures. But this framework can still be broadened 
to some extent. This must be done, however, not by an illusory movement ''downward,'' 
toward objective reality ''as it is, independent of our sense organs,'' but rather by a 
movement "upward," that is, by constructing secondary symbolic models of reality. 
Needless to say, the symbols of the theory preserve their continuous space-time existence 
just as the primary data of experience do. But in the relations between the one and the 
other, which is to say in the semantics of the theory, we can allow ourselves significant 
freedom if we are guided by the logic of new experimental facts, and not by our 
customary space-time intuition. And we can construct a sign system whose functioning is 
in no way related to graphic representations but is entirely appropriate to the condition of 
adequately describing reality. Quantum mechanics is such a system. In this system the 
quantum particle is neither a little greyish sphere nor a shiny one, and it is not a 
geometric point; it is a certain concept, a functional node of the system which, together 
with the other nodes, ensures description and anticipation of the real facts of experience: 
flashes on the screen, instrument readings, and the like.  

Let us return to the question of how the electron ''really'' moves. We have seen that, 
owing to the uncertainty relation, the experiment cannot in principle give an answer to 
this question. This question is therefore meaningless as an '"external part'' of the physical 
model of reality. All that we can do is to ascribe a purely theoretical meaning to it. But 
then it loses its direct linkage with observed phenomena and the expression "really" 
becomes pure deception! When we go outside the sphere of perception and declare that 
such-and-such ''really'' takes place we are always moving upward, not downward; we are 
constructing a pyramid of linguistic objects and it is only because of the optical illusion 
that it seems to us we are going deeper into the realm which lies beneath sensory 
experience. To put it metaphorically, the plane that separates sensory experience from 
reality is absolutely impervious; and when we attempt to discern what is going on 
beneath it we see only the upside-down reflection of the pyramid of theories. This does 
not mean that true reality is unknowable and our theories are not correct models of it; one 
must remember, however, that all these models lie on this side of sensory experience and 
it is meaningless to correlate distinct elements of theories with the illusory ''realities'' on 
the other side, as was done by Plato for example. The representation of the electron as a 
little sphere moving along a trajectory is just as much a construction as is the interlinking 
of the symbols of quantum theory. It differs only in that it includes a space-time picture 
to which, following convention, we ascribe illusory reality by using the expression 
''really,'' which is meaningless in this case. 

The transition to conscious construction of symbolic models of reality that do not rely on 
any graphic representations of physical objects is the great philosophical achievement of 
quantum mechanics. In fact physics has been a symbolic model since Newton's time and 
it owes its successes (numerical calculations) to precisely this symbolic nature; but 
graphic representations were present as an essential element. Now they are not essential 
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and this has broadened the class of possible models. Those who want to bring back the 
graphic quality no matter what, although they see that the theory works better without it, 
are in fact asking that the class of models be narrowed. They will hardly be successful. 
They are like the odd fellow who hitched his horse to a steam locomotive for, although he 
could see that the train moved without a horse, it was beyond his powers to recognize 
such a situation as normal. Symbolic models are a steam engine which has no need to be 
harnessed to the horse of graphic representations for each and every concept. 

 
¾THE COLLAPSE OF DETERMINISM 

THE SECOND IMPORTANT result of quantum mechanics, the collapse of determinism, 
was significant in general philosophy. Determinism is a philosophical concept. It is the 
name used for the view which holds that all events occurring in the world have definite 
causes and necessarily occur; that is, they cannot not occur. Attempts to make this 
definition more precise reveal the logical defects in it which hinder precise formulation of 
this viewpoint as a scientific proposition without introducing any additional 
representations about objective reality. In fact, what does ''events have causes'' mean? 
Can it really be possible to indicate some finite number of ''causes'' of a given event and 
say that there are no others? And what does it mean that the event "cannot not occur?'' If 
this means only that it has occurred then the statement becomes a tautology.  

Philosophical determinism can, however, obtain a more precise interpretation within the 
framework of a scientific theory which claims to be a universal description of reality. It 
actually did receive such an interpretation within the framework of mechanism 
(mechanical philosophy), the philosophical-scientific conception which emerged on the 
basis of the advances of classical mechanics in application to the motions of the celestial 
bodies. According to the mechanistic conception the world is three-dimensional 
Euclidean space filled with a multitude of elementary particles which move along certain 
trajectories. Forces operate among the particles depending on their arrangement relative 
to one another and the movement of particles follows the laws of Newton's mechanics. 
With this representation of the world, its exact state (that is, the coordinates and velocities 
of all particles) at a certain fixed moment in time uniquely determines the exact state of 
the world at any other moment. The famous French mathematician and astronomer P. 
Laplace (1749-1827) expressed this proposition in the following words: 

Given for one instance an intelligence which could comprehend all the forces by which 
nature is animated and the respective situation of the beings who compose it--an 
intelligence sufficiently vast to submit these data to analysis--it would embrace in the same 
formula the movements of the greatest bodies of the universe and those of the lightest  
atom; for it, nothing would be uncertain and the future, as the past, would be present to its 
eyes.[6] 

This conception became called Laplacian determinism. It is a proper and inevitable 
consequence of the mechanistic conception of the world. It is true that Laplace's 
formulation requires a certain refinement from a modern point of view because we cannot 
recognize as proper the concepts of an all-knowing reason or absolute precision of 
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measurement. But it can be modernized easily, almost without changing its meaning. We 
say that if the coordinates and velocities of all particles in a sufficiently large volume of 
space are known with adequate precision then it is possible to calculate the behavior of 
any system in any given time interval with any given precision. The conclusion that all 
future states of the universe are predetermined can be drawn from this formulation just as 
from Laplace's initial formulation. By unrestrictedly increasing the precision and scope of 
measurements we unrestrictedly extend prediction periods. Because there are no 
restrictions in principle on the precision and range of measurements (that is, restrictions 
which follow not from the limitations of human capabilities but from the nature of the 
objects of measurement) we can picture the extreme case and say that really the entire 
future of the world is already absolutely and uniquely determined today. In this case the 
expression ''really'' acquires a perfectly clear meaning: our intuition easily recognizes that 
this ''really'' is proper and we object to its discrediting.  

Thus, the mechanistic conception of the world leads to the notion of the complete 
determinism of phenomena. But this contradicts our own subjective feeling of free 
choice. There are two ways out of this: to recognize the feeling of freedom of choice as 
''illusory'' or to recognize the mechanistic conception as unsuitable as a universal picture 
of the world. It is already difficult today to say how thinking people of the "pre-quantum'' 
age were divided between these two points of view. If we approach the question from a 
modern standpoint, even knowing nothing of quantum mechanics, we must firmly adhere 
to the second point of view. We now understand that the mechanistic conception, like any 
other conception, is only a secondary model of the world in relation to the primary data 
of experience; therefore the immediate data of experience always have priority over any 
theory. The feeling of freedom of choice is a primary fact of experience just like other 
primary facts of spiritual and sensory experience. A theory cannot refute this fact; it can 
only correlate new facts with it, a procedure which, where certain conditions are met, we 
call explanation of the fact. To declare freedom of choice ''illusory'' is just as meaningless 
as telling a person with a toothache that his feeling is ''illusory.'' The tooth may be 
entirely healthy and the feeling of pain may be a result of stimulation of a certain segment 
of the brain, but this does not make it "illusory.''  

Quantum mechanics destroyed determinism. Above all the representation of elementary 
particles as little corpuscles moving along definite trajectories proved false, and as a 
consequence the entire mechanistic picture of the world--which was so understandable, 
customary, and seemingly absolutely beyond doubt--also collapsed. Twentieth-century 
physicists can no longer tell people what the world in which they live is really like, as 
nineteenth-century physicists could. But determinism collapsed not only as a part of the 
mechanistic conception, but also as a part of any picture of the world. In principle one 
could conceive of a complete description (picture) of the world that would include only 
really observed phenomena but would give unambiguous predictions of all phenomena 
that will ever be observed. We now know that this is impossible. We know situations 
exist in which it is impossible in principle to predict which of the sets of conceivable 
phenomena will actually occur. Moreover, according to quantum mechanics these 
situations are not the exception; they are the general rule. Strictly determined outcomes 
are the exception to the rule. The quantum mechanics description of reality is a 
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fundamentally probabilistic description and includes unequivocal predictions only as the 
extreme case.  

As an example let us again consider the experiment with electron diffraction depicted in 
figure 13.1. The conditions of the experiment are completely determined when all 
geometric parameters of the device and the initial momentum of the electrons released by 
the gun are given. All the electrons propelled from the gun and striking the screen are 
operating under the same conditions and are described by the same wave function. 
However, they are absorbed (produce flashes) at different points of the screen, and it is 
impossible to predict beforehand at what point an electron will produce a flash. It is even 
impossible to predict whether the electron will be deflected upward or downward in our 
picture; all that can be done is to indicate the probability of striking different segments of 
the screen. 

It is permissible, however, to ask the following question: why are we confident that if 
quantum mechanics cannot predict the point which an electron will strike no other future 
theory will be able to do this? 

We shall give two answers to this question. The first answer can be called formal. 
Quantum mechanics is based on the principle that description by means of the wave 
function is a maximally complete description of the state of the quantum particle. This 
principle, in the form of the uncertainty relation that follows from it, has been confirmed 
by an enormous number of experiments whose interpretation contains nothing but 
concepts of the lowest level, directly linked to observed quantities. The conclusions of 
quantum mechanics, including the more complex mathematical calculations, have been 
confirmed by an even larger number of experiments. And there are absolutely no signs 
that we should doubt this principle. But this is equivalent to the impossibility of 
predicting the exact outcome of an experiment. For example, to indicate what point on 
the screen an electron will strike one must have more knowledge about it than the wave 
function provides.  

The second answer requires an understanding of why we are so disinclined to agree that it 
is impossible to predict the point the electron will strike. Centuries of development in 
physics have accustomed people to the thought that the movement of inanimate bodies is 
controlled exclusively by causes external to them and that these causes can always be 
discovered by sufficiently precise investigation. This statement was completely justified 
as long as it was considered possible to watch a system without affecting it, which held 
true for experiments with macroscopic bodies. Imagine that figure 13.1 shows the 
distribution of cannonballs instead of electrons. and that we are studying their movement. 
We see that in one case the ball is deflected upward while in another it goes downward; 
we do not want to believe that this happens by itself, but are convinced that the difference 
in the behavior of the cannonballs can be explained by some real cause. We photograph 
the flight of the ball, do some other things, and finally find phenomena A1 and A2, which 
are linked to the flight of the cannonball in such a way that where A1 is present the ball is 
deflected upward and where A2 is present it goes downward. We therefore say that A1 is 
the cause of deflection upward while A2 is the cause of deflection downward. Possibly 
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our experimental area will prove inadequate or we shall simply get tired of investigating 
and not find the sought-for cause. We shall still remain convinced that a cause really 
exists, and that if we had looked harder we would have found phenomena A1 and A2. 

In the experiment with electrons, once again we see that the electron is deflected upward 
in some cases and downward in others and in the search for the cause we try to follow its 
movement, to peek behind it. But it turns out here that we cannot peek behind the 
electron without having a most catastrophic effect on its destiny. A stream of light must 
be directed at the electron if we are to ''see'' it. But the light interacts with the substance in 
portions, quanta, which obey the same uncertainty relation as do electrons and other 
particles. Therefore it is not possible to go beyond the uncertainty relation by means of 
light or by any other investigative means. In attempting to determine the coordinate of the 
electron more precisely by means of photons we either transfer such a large and 
indeterminate momentum to it that it spoils the entire experiment or we measure the 
coordinate so crudely that we do not find out anything new about it. Thus, phenomena A1 
and A2 (the causes according to which the electron is deflected upward in some cases and 
downward in others) do not exist in reality. And the statement that there "really'' is some 
cause loses any scientific meaning. 

Thus, there are phenomena that have no causes, or more precisely, there are series of 
possibilities from which one is realized without any cause. This does not mean that the 
principle of causality should be entirely discarded: in the same experiment, by turning off 
the electron gun we cause the flashes on the screen to completely disappear, and turning 
off the gun does cause this. But this does mean that the principle must be narrowed 
considerably in comparison with the way it was understood in classical mechanics and 
the way it is still understood in the ordinary consciousness. Some phenomena have no 
causes; they must be accepted simply as something given. That is the kind of world we 
live in. 

The second answer to the question about the reasons for our confidence that 
unpredictable phenomena exist is that the uncertainty relation assists us in clarifying not 
only a mass of new facts but also the nature of the break regarding causality and 
predictability that occurs when we enter the microworld. We see that belief in absolute 
causality originated from an unstated assumption that there are infinitely subtle means of 
watching and investigating, of ''peeking'' behind the object. But when they came to 
elementary particles physicists found that there is a minimum quantum of action 
measurable by the Planck constant h, and this creates a vicious circle in attempts to make 
the description of one particle by means of another detailed beyond measure. So absolute 
causality collapsed, and with it went determinism. From a general philosophical point of 
view it is entirely natural that if matter is not infinitely divisible then description cannot 
be infinitely detailed so that the collapse of determinism is more natural than its survival 
would have been. 
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¾¾"CRAZY" THEORIES AND METASCIENCE[7] 

THE ABOVEMENTIONED SUCCESSES of quantum mechanics refer primarily to the 
description of nonrelativistic particles--that is, particles moving at velocities much slower 
than the velocity of light, so that effects related to relativity theory (relativistic effects) 
can be neglected. We had nonrelativistic quantum mechanics in mind when we spoke of 
its completeness and logical harmony. Nonrelativistic quantum mechanics is adequate to 
describe phenomena at the atomic level, but the physics of elementary high-energy 
particles demands the creation of a theory combining the ideas of quantum mechanics 
with the theory of relativity. Only partial successes have been achieved thus far on this 
path; no single, consistent theory of elementary particles which explains the enormous 
material accumulated by experimenters exists. Attempts to construct a new theory by 
superficial modifications of the old theory do not yield significant results. Creation of a 
satisfactory theory of elementary particles runs up against the uniqueness of this realm of 
phenomena, phenomena which seem to take place in a completely different world and 
demand for their explanation completely unconventional concepts which differ 
fundamentally from our customary scheme of concepts.  

In the late 1950s Heisenberg proposed a new theory of elementary particles. Upon 
becoming familiar with it Bohr said that it could hardly prove true because it was ''not 
crazy enough.'' The theory was not in fact recognized, but Bohr's pointed remark became 
known to all physicists and even entered popular writing. The word "crazy" [Russian 
sumasshedshaya, literally ''gone out of the mind''] was naturally associated with the 
epithet ''strange,'' which was applied to the world of elementary particles. But does 
''crazy'' mean just ''strange,'' ''unusual"? Probably if Bohr had said "not unusual enough,'' 
it would not have become an aphorism. The word ''crazy'' has a connotation of 
''unreasoned,'' ''coming from an unknown place,'' and brilliantly characterizes the current 
situation of the theory of elementary particles, in which everyone recognizes that the 
theory must be fundamentally revised, but no one knows how to do it.  

The question arises: does the ''strangeness'' of the world of elementary particles--the fact 
that our intuition, developed in the macroworld, does not apply to it--doom us to wander 
eternally in the darkness? 

Let us look into the nature of the difficulties which have arisen. The principle of creating 
formalized linguistic models of reality did not suffer in the transition to study of the 
microworld. But if the wheels of these models, the physical concepts, came basically 
from our everyday macroscopic experience and were only refined by formalization, then 
for the new, ''strange" world we need new, "strange'' concepts. But we have nowhere to 
take them from; they will have to be constructed and also combined properly into a whole 
scheme. In the first stage of study of the microworld the wave function of nonrelativistic 
quantum mechanics was constructed quite easily by relying on the already existing 
mathematical apparatus used to describe macroscopic phenomena (the mechanics of the 
material point, the mechanics of continuous media, and matrix theory). Physicists were 
simply lucky. They found prototypes of what they needed in two (completely different) 
concepts of macroscopic physics and they used them to make a ''centaur,'' the quantum 
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concept of the wave-particle. But we cannot count on luck all the time. The more deeply 
we go into the microworld the greater are the differences between the wanted concept-
constructs and the ordinary concepts of our macroscopic experience: it thus becomes less 
and less probable that we shall be able to improvise them, without any tools, without any 
theory. Therefore we must subject the very task of constructing scientific concepts and 
theories to scientific analysis, that is, we must make the next metasystem transition. In 
order to construct a definite physical theory in a qualified manner we need a general 
theory of the construction of physical theories (a metatheory) in the light of which the 
way to solve our specific problem will become clear. 

The metaphor of the graphic models of the old physics as a horse and the abstract 
symbolic models as a steam engine can be elaborated as follows. Horses were put at our 
disposal by nature. They grow and reproduce by themselves and it is not necessary to 
know their internal organization to make use of them. But we ourselves must build the 
steam engine. To do this we must understand the principles of its organization and the 
physical laws on which they are based and furthermore we must have certain tools for the 
work. In attempting to construct a theory of the ''strange'' world without a metatheory of 
physical theories we are like a person who has decided to build a steam engine with his 
bare hands or to build an airplane without having any idea of the laws of aerodynamics.  

And so the time has come for the next metasystem transition. Physics needs . . . I want to 
say ''metaphysics," but, fortunately for our terminology, the metatheory we need is a 
metatheory in relation to any natural science theory which has a high degree of 
formalization and therefore it is more correct to call it a metascience. This term has the 
shortcoming of creating the impression that a metascience is something fundamentally 
outside of science whereas in fact the new level of the hierarchy created by this 
metasystem transition must, of course, be included in the general body of science, thereby 
broadening it. The situation here is similar to the situation with the term 
metamathematics: after all, metamathematics is also a part of mathematics. Inasmuch as 
the term ''metamathematics was acceptable nonetheless, the term "metascience'' may also 
be considered acceptable. But because a very important part of metascientific 
investigation is investigation of the concepts of a theory, the term conceptology may also 
be suggested.  

The basic task of metascience can be formulated as follows. A certain aggregate of facts 
or a certain generator of facts is given. How can one construct a theory that describes 
these facts effectively and makes correct predictions?  

If we want metascience to go beyond general statements it must be constructed as a full-
fledged mathematical theory and its object the natural science theory, must be presented 
in a formalized (albeit simplified: such is the price of formalization) manner, subject to 
mathematics. Represented in this form the scientific theory is a formalized linguistic 
model whose mechanism is the hierarchical system of concepts, a point of view we have 
carried through the entire book. From it, the creation of a mathematical metascience is the 
next natural metasystem transition, and when we make this transition we make our 
objects of study formalized languages as a whole--not just their syntax but also, and 
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primarily, their semantics, their application to description of reality. The entire course of 
development of physico-mathematical science leads us to this step.  

But in our reasoning thus far we have been basing ourselves on the needs of physics. 
How do things stand from the point of view of pure mathematics?  

Whereas theoretical physicists know what they need but can do little, "pure" 
mathematicians might rather be reproached for doing a great deal but not knowing what 
they need. There is no question that many pure mathematical works are needed to give 
cohesion and harmony to the entire edifice of mathematics, and it would be silly to 
demand immediate ''practical'' application from every work. All the same, mathematics is 
created to learn about reality, not for esthetic or sporting purposes like chess, and even 
the highest stages of mathematics are in the last analysis needed only to the extent that 
they promote achievement of this goal.  

Apparently, upward growth of the edifice of mathematics is always necessary and 
unquestionably valuable. But mathematics is also growing in breadth and it is becoming 
increasingly difficult to determine what is needed and what is not and, if it is needed, to 
what extent. Mathematical technique has now developed to the point where the 
construction of a few new mathematical objects within the framework of the axiomatic 
method and investigation of their characteristics has become almost as common, although 
not always as easy, a matter as computations with fractions were for the Ancient 
Egyptian scribes. But who knows whether these objects will prove necessary? The need 
is emerging for a theory of the application of mathematics, and this is actually a 
metascience. Therefore, the development of metascience is a guiding and organizing task 
in relation to the more concrete problems of mathematics. 

The creation of an effective metascience is still far distant. It is difficult today to even 
picture its general outlines. Much more preparatory work must be done to clarify them. 
Physicists must master "Bourbakism" and develop a "feel" for the play of mathematical 
structures, which leads to the emergence of rich axiomatic theories suitable for detailed 
description of reality. Together with mathematicians they must learn to break symbolic 
models down into their individual elements of construction in order to compose the 
necessary blocks from them. And of course, there must be development of the technique 
of making formal computations with arbitrary symbolic expressions (and not just 
numbers) using computers. Just as the transition from arithmetic to algebra takes place 
only after complete assimilation of the technique of arithmetic computations, so also the 
transition to the theory of creating arbitrary sign systems demands highly sophisticated 
techniques for operations on symbolic expressions and a practical answer to the problem 
of carrying out cumbersome formal computations. Whether the new method will 
contribute to a resolution of the specific difficulties that now face the theory of 
elementary particles or whether they will be resolved earlier by ''oldtime'' manual 
methods we do not know and in the end it is not important because new difficulties will 
undoubtedly arise. One way or another, the creation of a metascience is on the agenda. 
Sooner or later it will be solved, and then people will receive a new weapon for 
conquering the strangest and most fantastic worlds.  
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CHAPTER FOURTEEN 
  

The Phenomenon of Science 

 
¾¾THE HIGHEST LEVEL OF THE HIERARCHY 

THE UNIVERSE IS EVOLVING. The organization of matter is constantly growing 
more complex. This growing complexity occurs through metasystem transitions from 
which new levels of organization emerge which are levels of the control hierarchy. The 
inorganic world, plants, animals, the human being--such has been the course of evolution 
on our planet, and as far as we know this is the greatest advance which has been made in 
the part of space that surrounds us. It also seems highly probable that the human being is 
the crown of evolution of the entire cosmos. In any case, we do not have any direct 
indications or even the slightest hints of the existence of a higher level of organization. 
Therefore all we can do is consider ourselves the highest.  

The appearance of the human being marks the beginning of the Age of Intellect, when the 
leading force of development becomes conscious human creativity and the highest level 
of organization is the culture of human society. In its development culture generates the 
next level of the hierarchy within itself. This is critical thinking which, in its turn, gives 
rise to modern science, constructing models of reality using sign systems. These are new 
models; they did not and could not exist in the minds of individual human beings outside 
of civilization and culture, and they enlarge human power over nature colossally. They 
make up the continuously improving and developing super-brain of the super-being 
which is humanity as a whole. Thus, science is the highest level of the hierarchy in the 
organization of cosmic matter. It is the highest growth point of a growing tree, the 
leading shoot in the evolution of the universe. This is the significance of the cosmic 
phenomenon of science as a part of the phenomenon of man. 

 
¾¾SCIENCE AND PRODUCTION 

JUST AS IN THE EVOLUTION of animals there was a stage when the central nervous 
system formed and as a result profound changes occurred in the structure, behavior, and 
external appearance of the organism, an age of swift and profound changes under the 
direct influence of science has now arrived in the development of society. At the 
beginning of the first industrial revolution science played a relatively small part, but then 
came discoveries in physics and chemistry which led to revolutionary changes in 
technology and the conditions of societal life. In the 1950s the second industrial 
revolution began, indebted entirely to scientific advances. It is still picking up speed 
today and even its very immediate repercussions are difficult to anticipate. 

It is now widely recognized that science has become a direct productive force. On the 
other hand, it cannot develop without the development of industrial production, and that 
is becoming increasingly expensive. Modern production requires not only that ready 
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formulas from science be used but also that scientific research and the scientific approach 
be introduced in all elements of production. More and more it comes to resemble science. 
On the other hand, science, attracting a significant part of the human and physical 
resources of society and becoming a regulated, mass occupation, is acquiring the 
characteristics of production. Science and production are growing together into a single 
hierarchical system. The uppermost growth point sends out leaves which grow rapidly at 
first but then stop and become standard, stable forms of interaction with physical reality: 
electrical motors, airplanes, machines to produce synthetic fabrics, and genetic methods 
of selection. But the growth point rises higher and higher and generates more and more 
new leaves. 

 
¾¾THE GROWTH OF SCIENCE 

SCIENCE IS GROWING. It grows exponentially, which is to say that its quantitative 
characteristics increase so many times each so many years. The total number of articles in 
scientific journals throughout the world doubles every 12 to 15 years.[1] 

The number of workers in science doubles every 15 years in Western Europe, every 10 
years in the United States, and every 7 years in the USSR. With such a furious growth 
rate the contemporary generation of scientists constitutes 90 percent of all the scientists 
who have ever lived on Earth.  

Along with science other quantitative characteristics of the human race are growing 
exponentially: the total number of people and the total volume of production of material 
goods. But science significantly surpasses them in growth rate. The growth rates of 
population, production, and science are roughly in the ratio 1:2:4. This is a healthy ratio 
which reflects that evolution of an organism where the mass of muscles is growing more 
rapidly than the total mass of the body but the mass of the brain is growing more rapidly 
than the mass of the muscles. Unfortunately, the territorial distribution of growth is poor. 
High population growth falls primarily in countries with low production growth and 
virtually no contribution to world science. We hope, however, that humanity will be able 
to handle these growing pains. There can hardly be any doubt that growing pains is all 
they are. After all, the rapid population growth in the underdeveloped countries is due to 
the high level of world science (medical service. social changes). Already today the 
human race represents a highly integrated system and its overall takeoff, which is 
conveyed by the ratio 1:2:4, is the result of the development of science, a very recent 
phenomenon. If we extrapolate the present rate of population growth (on the order of two 
percent a year) into the past, it appears that there would have been just two people living 
on Earth a mere thousand years ago! 

The proportion of people employed directly in the sphere of science is still small, even in 
the highly developed countries. It ranges from 0.5 to one percent. The figure is now 
growing rapidly, but it is obvious that sooner or later its growth will slow down; it will 
reach a constant level which is difficult to predict today. As far as can be judged by the 
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literature, it is considered improbable that this level will exceed 25 percent. After all, by 
weight the human brain is also a small part of the entire body. 

The absolute number of people engaged in scientific work will nonetheless grow steadily, 
and together with it the quantity of information produced by them will also grow steadily. 
This quantity is already enormous today. The first scientific periodicals began to come 
out in the second half of the seventeenth century. By the start of the 1960s the total 
number of periodicals was about 50,000 )see figure 14.1) 30,000 of these were still being 
published in 1966.  

 

Figure 14.1.  Growth in the total number of scientific journals 

A total of 6 million articles had been published in them, and this figure was increasing by 
500,000 a year.[2] The total number of patents and author's certificates recorded was 
more than 13 million. This stream of information, which must be used, gives rise to 
serious difficulties. For a long time scientific work has demanded an extreme degree of 
specialization, but recently it has become increasingly common for scientists to be unable 
to follow all the new work even in their own narrow areas. They face a dilemma: either 
read articles or work. Moreover, as a result of technical difficulties in disseminating and 
processing enormous amounts of information (we might also mention the imperfections 
in the information system in science and technology) substantial effort must often be 
expended to find the necessary information, and this effort is not always successful. As a 
result a great deal of work is duplicated or not properly done. According to estimates by 
American scientists, between 10 and 20 percent of scientific research and experimental 
design work could be dispensed with if information on similar work already done were 
available. The resulting losses in the United States have been $1.25 billion. According to 
G. N. Dobrov, in 1946 40 percent of applications for invention certification in the area of 
coal-combine construction were rejected as repetitious. In 1961 this figure had risen to 85 
percent. 
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¾¾THE FORMALIZATION OF SCIENTIFIC LANGUAGE 

CAN WE CONCLUDE from this that there is an information crisis in science? It is 
perhaps too early to speak of a crisis, but we can already see that as a result of the 
continuous growth in the stream of information there will be a crisis in the near future if 
qualitative changes do not take place in the organization of scientific research. Until now 
scientific research has been organized in forms which developed traditionally, by 
themselves. Not only are they not the result of scientific investigation, but until recently 
they have not even been a subject of investigation. So there must be a scientific approach 
to the problem of organizing scientific activity--that is, a new metasystem transition: 
scientific control of the system of science. This metasystem transition has two aspects. 
The first, which does not go beyond the framework of science as a subsystem in the 
system of culture, creates a new level of the hierarchy within the framework of science as 
a primarily linguistic activity. This is what we called metascience in the preceding 
chapter. The second aspect concerns science as a social phenomenon. This aspect has 
come to be called the science of science [in Russian, naukovedenie]. 

We introduced the concept of the metascience without having connected it to the 
information problem. When speaking of mathematics, however, we remarked that the 
metascientific, conceptual approach is the organizing principle for the limitless number of 
theories and problems axiomatic symbolic mathematics can generate. The connection 
with the information problem in the natural and technical sciences is obvious here. There 
is a great deal that can be investigated, and many research plans can be boldly outlined. 
But one must have first clear planning principles, plans for plans. Otherwise there will be 
anarchy among plans, and when anarchy occurs the decisive factors are frequently those 
remote from the interests of science: considerations of prestige, personal contacts, and the 
like. Furthermore, it is essential for the language of the natural sciences and engineering 
to be completely formalized; then the aggregate of human knowledge will appear in the 
form of a harmonious system; only then will it become possible to work out the scientific 
principles of planning science. One should not think that the process of formalization is 
something "formal,'' that is to say syntactical and amounting to nothing but new 
notations. The problem of formalization of the scientific language is a conceptual, 
semantic problem. It is the problem of working out new concepts, a problem which 
resembles the formalization and axiomatization which occurred in mathematics.  

A completely formalized language is a language accessible to the machine. When the 
edifice of science has a formalized frame we can separate the work that can be done by 
machines and automata from the jobs that require creative human participation. After the 
separation the machine work can be assigned to machines. Today, of course, the very 
simplest tasks of this sort are already being done by machines (automation and the use of 
computers), but formalization will make it possible to raise considerably the level of 
problems solved by machines. This refers above all to the processing of information 
flows. Systematization and storage of information, selection of needed information, and 
very simple information conversions-- these and other tasks which make up the 
information problem today cannot be satisfactorily resolved by machines without 
complete formalization of language. It is difficulties in formalizing language which at the 
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present time limit the application of computers in information science. The advances that 
are being made in this area are primarily related to more or less successful formalization 
of more or less extensive parts of the scientific-technical language. 

 
¾¾THE HUMAN BEING AND THE MACHINE 

HOWEVER, turning over the lower levels of science to machines should involve, and 
already is involving, not only linguistic activity but also direct manipulation of the natural 
objects under study. Properly speaking, each time modern automation is used in scientific 
experiments it is indeed an "entry of the machine into research." Raising the level of 
automation in this or that particular sphere of research implies complete formalization of 
a corresponding part of the scientific language. Automatic scanning of photographs with 
traces (tracks) of elementary particles and sorting out given configurations of tracks is a 
prototype of future achievements in this area. The universal arrival of machines in direct 
contact with nature will require universal formalization of the language of science. The 
next stage which can be anticipated is independent machine formulation of experiments 
in accordance with metascientific recommendations.  

As machines are increasingly used in science and production, the human being will 
become increasingly free from noncreative activity--which, no matter how paradoxical it 
may seem, becomes needed precisely because of the successes of creative activity! For 
what is creativity? Above all creativity is constructive action, action that leads to an 
increase in the level of organization in the world. But an action is not characterized as 
creative only on the basis of its results. These results must be considered within the 
relationship to the mechanism of the action or the relations between this action and the 
system that gave rise to it. The same action may be a creative act when it is done for the 
first time and mechanical repetition of the past when it is done according to established, 
known rules, by applying standard procedures. Nothing that is produced within the 
framework of an already existing system of control, whether it is work by a computer or 
the composition of stereotyped articles, is creativity. Creativity always goes beyond the 
framework of the system; it is free action. Creativity is a metasystem transition. The 
evolution of the universe is continuous creativity. One of the manifestations of this 
process is creative acts in culture which establish new levels of control and in this way 
deprive lower-level actions of their creative character. Thousands of slaves had to be 
driven to build a pyramid; thousands of arithmetic operations had to be performed to 
calculate the exact positions of the planets on paper. Machines will rid the human being 
of that sort of work and transfer human activity to that level of the hierarchy which is still 
creative at the given moment. With time, this level will also cease to be creative; the 
boundary between creative and uncreative work is steadily crawling upward.  

Ideally, immediately after the discovery of the presence of a system in some activity, this 
activity (or the part subordinate to the system discovered) could be turned over to a 
machine. Unfortunately, there is at present a considerable gap between the time an 
uncreative component appears and the time when there is a practical possibility that it can 
be turned over to a machine. The development of automation in the realm of 
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nonlinguistic activity, accompanied by formalization of language in the realm of 
linguistic activity, is lessening the gap, but it remains large. The information problem in 
science, the necessity of routine, stereotyped research, and the need to overcome 
organizational difficulties to conduct experiments are all evidence this gap exists in 
scientific activity. In production, we are still a long way from automatic plants capable of 
producing motor vehicles and television sets according to plans fed to them. We are even 
farther from the time when there will be nothing but automatic plants. But sooner or later 
this will occur. The gap will be eliminated or reduced to a minimum. The formalization 
of language and automation will rid human beings of uncreative work just as the use of 
mechanical energy has for the most part rid us of heavy physical labor. 

 
¾¾SCIENTIFIC CONTROL OF SOCIETY 

THE SOCIAL ASPECT of the problem of controlling science is inseparable from the 
problem of controlling society as a whole. Science and production are growing into a 
single system, and politics and ideology are also inseparably linked to it. Furthermore, 
both aspects of the metasystem transition necessary for the development of science (the 
metascientific and social aspects) are also inseparably linked, and there is no hope of 
fully carrying out the former without carrying out the latter. Thus we have here 
essentially a single problem--the problem of scientific control of society. And even from 
the point of view of ''pure'' science this problem is the principal one; progress is 
impossible unless it is solved.  

In the initial stages of the development of science, scientists had a comparatively proper 
justification for nonintervention in the practical affairs of society. It was possible to say 
that science itself was one of the highest values of existence and would demonstrate its 
amazing capabilities in the future; in its embryonic state, it would have to be given the 
peace and warmth needed for development, no matter what. The scientist could say, like 
a hen sitting on her eggs "Do what you want, but just leave me in peace! I am hatching a 
remarkable chick. That is the main thing." 

In our day this sort of reasoning is pure hypocrisy. The remarkable chick has come out of 
its shell and requires food. To isolate it from the environment now would mean to starve 
it to death. 

 
¾¾SCIENCE AND MORALITY 

THUS SCIENCE CLAIMS the role of supreme judge and master of the entire society. 
But will it be able to handle this role'? After all, people need not only knowledge of the 
laws of nature and the ability to use them. They also need certain moral principles, 
answers to such questions as what is good and what is bad? What should a person strive 
toward and what should a person oppose? What is the meaning and goal of the existence 
of each person and of all humanity? 



  

 251

Strictly speaking, science cannot answer these questions. The ideas of the good, the goal, 
and the duty which are part of moral principles are beyond the bounds of science. Science 
engages in the construction of models of that reality which actually exists, not that which 
should be. It answers the questions: What really is? What will be if such-and-such is 
done? What must be done so that such-and-such will be? But science cannot in principle 
answer the question "What must be done?'' without any "if'' or "in order that.'' As a 
certain American philosopher remarked, no matter how much you study the train 
schedules you will not be able to choose a train if you do not know where you are going. 
All attempts to construct moral principles on a scientific basis inevitably lead in the end 
to the question ''What is the Supreme Good?" or ''What is the Supreme Goal?'' which are 
essentially the same thing. Scientific knowledge and logical deductions are relevant to 
moral problems only to the extent that they help deduce answers to particular questions 
from the answer to this general, final question. The problem of the Supreme Goal remains 
outside science and its solution necessarily requires an act of will; it is in the last analysis 
a result of free choice.  

This in no sense means that science has no influence at all on the solution to this problem. 
True to its principle of investigating everything in the world, science can look from 
outside at the human being and at entire societies which are deciding the problem of the 
Supreme Goal for themselves. Science can analyze various aspects of this situation and 
predict the results to which adoption of a particular decision will lead. And this analysis 
can significantly influence the process of solving the problem, although it does not 
change the nature of the solution as a freely made choice. 

 
¾¾THE PROBLEM OF THE SUPREME GOOD 

WHEN AND HOW does the problem of the Supreme Good and the Supreme Goal 
emerge? It is obvious that the animals did not have it, nor was it found in the early stages 
of the development of human society. Until a certain time, good for both human beings 
and animals was that which brought satisfaction, and there was a hierarchy of goals--
crowned by the instincts for preservation of life and continuation of the species--that 
corresponded to the hierarchy of .satisfactions. The concept of the goal and the concept of 
the good are, in general, inseparable; they are two aspects of a single concept. The human 
being strives toward good, by definition, and calls that toward which he strives good. In 
the stage when good is equated with satisfaction the human being does not differ in any 
way from the animal in a moral sense; for the human being, moral problems do not exist. 
The point here is not the nature of the satisfaction, but the fact that it is given, that the 
criterion of satisfaction is the highest controlling system--one that changes goals but that 
does not undergo changes itself. Even from a purely biological point of view human 
satisfactions differ from animal satisfactions. As an example we may recall the sense of 
the beautiful. And as the social structure becomes more complex the human being 
acquires new satisfactions which are unknown to animals. Nonetheless, this does not 
create the problem of the Supreme Good. That arises when culture begins to have a 
decisive effect on the system of satisfactions, when it turns out that what people think, 
say, and do is capable of changing their attitude toward the world to such an extent that 
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events which formerly caused satisfaction now cause dissatisfaction, and vice versa. 
True, satisfactions at the lowest level (those deriving from direct satisfaction of physical 
needs) hardly change at all as culture develops, but satisfactions of the highest level 
(elation at one's skill in hunting, physical endurance, and the like) are sometimes capable 
of outweighing low-level dissatisfaction. In this way the criterion of satisfaction itself 
proves subject to control. A metasystem transition occurs; the social scale of values and 
system of norms of behavior emerge.  

But this is only the prologue to the problem of the Supreme Good. In primitive society 
the norms of behavior can be compared to animal instincts; in the social super-brain they 
are in fact a precise analogue of the instincts embedded in the brain of the individual 
animal. Control of association (thinking) destroys instincts or, to put it better, it demotes 
them and puts social norms of behavior in the topmost place. In primitive society these 
norms are just as absolute as instincts are for the animal. And although they do change in 
the process of society's development, just as instincts change in the process of evolution 
of the species, this is unconscious change. They are perceived by each individual as 
something given and beyond doubt. But then one more metasystem transition occurs, the 
transition to critical thinking, and then the problem of the Supreme Good emerges in full. 

Now people not only influence their own criteria of satisfaction through their linguistic 
activity, but they are conscious of this influence. The simple ''I want it that way!" loses its 
primary, given quality. When a person becomes aware that what he wants is not only a 
result of his upbringing but also depends on himself and may be changed by reflection 
and self-education, he cannot help asking himself what he should want. In his 
consciousness he finds an empty place that must be filled with something. ''Is there an 
absolute Supreme Good toward which one should strive?'' he asks himself. ''How should 
one live? What is the meaning of life?" 

But he cannot get unequivocal answers to these questions. A goal can only be deduced 
from a goal, and if a person is free in his desires, then he is also free in his desires for 
desires. The circle of doubts and questions closes and there is nothing more to rely upon. 
The system of behavior is suspended in the air. Naive primitive beliefs and traditional 
norms of behavior collapse. The age of religious and ethical teachings arrives. 

There are many of these teachings and they differ in many ways, but at the same time it 
appears that they also have a great deal in common, at least if we speak of the teachings 
which have become widespread. Our job now is to determine whether the scientific 
worldview leads us to some type of ethical teaching, and if it does, which one. At the 
same time we shall discuss the question of the nature of the common denominator of the 
different ethical teachings. 

 
¾¾SPIRITUAL VALUES 

BEFORE DISCUSSING the problems of the Supreme Good and the meaning of life we 
must gain assurance that the problem is worth discussing. There are many people whose 
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point of view may be called the theory of natural values. According to this theory the 
creation of ethical teachings is an idle occupation if not a harmful one. This theory asserts 
that human nature contains, along with needs and instincts of animal origin, a yearning 
for specifically human spiritual values such as knowledge, beauty, justice, and love of 
one's neighbor. Achieving these values brings the highest satisfaction. The task of a 
human being is to develop these yearnings in himself and in others and thus obtain the 
highest satisfaction from life. This is the one natural goal of the human being, the one 
natural purpose. Philosophical religious and ethical teachings which begin from a priori 
principles or principles taken from who knows where can only muffle and distort these 
natural, truly human yearnings and force people to act basely in the name of a Supreme 
Good which they have invented.  

What can we say about this theory? It is convenient as a pretext for avoiding the solution 
of a difficult question. It also has the merit of shunning extreme positions. But, 
unfortunately, it is untrue. It is contrived to a much higher degree than the other teachings 
which openly admit their dogmatic nature. The assertion that striving toward the highest 
spiritual values is part of human nature in its literal, exact sense contradicts the facts. 
Children carried off by animals who grow up away from human society do not show an 
understanding of the highest values of modern civilized people; they generally do not 
become full-fledged people. Therefore, there is nothing in the actual structure of the 
developing brain that would unequivocally generate those specific higher aspirations of 
which the theory of natural values speaks.  

"Oh no!'' a supporter of this theory will say, becoming terribly indignant at such a 
vulgarization of his views. ''We are certainly not speaking of the concrete ways these 
yearnings are manifested; what we refer to is their general foundation, which requires the 
conditions created by society if it is to manifest itself.''  

But then the theory of natural values commits the sin of switching concepts. To say 
''general foundation'' is to say nothing if we do not give the concrete substance of this 
foundation and its connection with observed manifestations. From the point of view 
being developed in this book, the general foundation of the highest values recognized at 
the present time by a majority of the human race really does exist; it is inborn, encoded in 
the structure of the genes of each human being. This foundation is the ability to control 
the process of associating. It may be tentatively called the ''knowledge instinct'' (see 
chapter 4), but this is just a figurative expression. The profound difference between this 
ability and instinct is that instinct dictates forms of behavior while control of associating 
mainly permits them and removes old prohibitions. Control of associating is an extremely 
undifferentiated, multivalued capability which admits diverse applications. Even what we 
call thinking is not an inevitable result. And what can we say about the more concrete 
forms of mental activity? 

Control of associating is more a destructive than a constructive principle; it needs 
constructive supplementation. This supplementation is the social integration of 
individuals, the formation of human society. It is in the process of development of society 
that spiritual values originate. Of course, they are far from accidental, but it is a long way 
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from their general foundation implanted by nature in all human beings to spiritual values, 
and on this road it is the logic of society, not the logic of the individual, that governs. 
This road is not unambiguous and it is not complete.  

The theory of natural values, in speaking dimly of the "general foundation" of spiritual 
values, thus actually equates certain particular ideals recognized at the present time by 
some (possibly many) people with this ''general foundation'' which is absolute, invariable, 
and implanted in human nature. Two consequences follow from this error. For one, the 
theory of natural values does a disservice to the spiritual values it promotes when it 
promotes them on a false basis. It is like the well-wisher who started defending the right 
of a peasant lad to human dignity not on the basis of the general principles of humanism 
but rather by attempting to prove his noble origin; the deception can easily be revealed 
and the unfortunate young man will be flogged. In the second place, this theory does not 
contain any stimuli to the development of spiritual values; it is antievolutionary, 
conservative to an extreme.  

What do we have in mind when we say that some particular values are natural for the 
human being? Obviously we mean that they are dictated, established for human beings by 
nature itself. For the animal, instincts are the goals which nature gives him, and what fits 
the instincts is natural for him. But nature does not give the human being goals: the 
human being is the highest level of the hierarchy. This is a medical fact, as Ostap 
Bender[3] would say, a fact of the organization of the human brain. The human being has 
nowhere from which to receive goals; he creates them for himself and for the rest of 
nature. For the human being there is nothing absolute except the absence of absolutes and 
there is nothing natural except endless development. Everything that seems natural to us 
at a given moment is relative and temporary. And our current spiritual values are only 
mileposts on the road of human history. 

It is worth thinking about the meaning of life. To think about the meaning of life means 
to create higher goals and this is the highest form of creativity accessible to the human 
being. This type of creativity is always needed because the highest goals must change in 
the process of development and will always change. And each person must somehow 
decide this question for himself since nature has given him such an opportunity. 
Assurances that this problem has been solved or assurances that it is insoluble are lies 
which some use deliberately: others fall back on them from mental laziness and lack of 
fortitude. The question is, of course, insoluble at the level of pure knowledge; it must 
include an element of free choice. But conscious choice accompanied by study of the 
object and reflection is one thing and blind imitation of an example imposed upon us is 
something else. In one way or another someone creates the highest goals, because outside 
of society, "in nature,'' there are none. Every person is given this capability to some 
extent; to voluntarily reject the use of it is the same thing as for a healthy animal to 
voluntarily reject physical movement and use of the muscles. 
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¾¾THE HUMAN BEING IN THE UNIVERSE 

THE CRITICISM of the theory of natural values shows clearly that element of the 
scientific picture of the world we can use as a starting point to arrive at definite moral 
principles, or at least definite criteria for evaluating them. This element is the doctrine of 
the evolution of the universe and the human role in it. And so, let us set off. 

The assertion of the continuous development and evolution of the universe is the most 
important general truth established by science. Everywhere we turn we observe 
irreversible changes subordinate to a majestic general plan or to the basic law of 
evolution, which manifests itself in the growing complexity of the organization of matter. 
Reason emerges on Earth as a part of this plan. And although we know that the sphere of 
human influence is a tiny speck in the cosmos still we consider the human being the 
crown of nature's creation. Experience in investigating the most diverse developing 
systems shows that a new characteristic appears first in a small space but, thanks to the 
potential enclosed in it, engulfs a maximum of living, space over time and creates the 
springboard for a new, higher level of organization. Therefore we believe that a great 
future awaits the human race, surpassing everything that the boldest imagination can 
conceive. 

But no one person is the human race. What can a person say about himself, about the 
place of his own mortal self in the universe? What can the human being attain? How do 
one's will and consciousness enter the scientific picture of the world? 

One hundred years ago the portrait of the world that science depicted was completely 
deterministic. If one took it seriously, one could become an absolute fatalist. But we 
know now that this picture was wrong. According to contemporary notions the laws of 
nature are exclusively probabilistic. Events may be more or less probable (or completely 
impossible), but there is no law that can force events to flow in a strictly determined 
manner. The laws of nature more often demonstrate the impossibility of something, than 
the reverse; it is not accidental that the most general laws are prohibitive (the law of 
conservation of energy, the law of increasing entropy, and the uncertainty relation). Cases 
where the course of events can be predicted quite accurately far into the future are more 
the exception than the rule--an example here is astronomical predictions. But they are 
possible only because we encounter here an enormous difference in time scales between 
astronomical and human time. If we were to approach the motions of the celestial bodies 
with the time scales inherent in them it would turn out that the only predictions we could 
make would be as limited as our predictions regarding the molecules of air we breathe. 
So the successes of celestial mechanics which inspired Laplace in his formulation of 
determinism are a very special case. 

Indeterminacy is deeply implanted in the nature of things. The evolution of the universe 
is a continuous and universal elimination of this indeterminacy, a continuous and 
universal choice of one possibility from a certain set of possibilities. We can compare 
two situations involving choice--extreme cases that have been well-studied.  
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The first situation is the collision of two elementary particles. Knowing the initial 
conditions of the collision, we can give the probability of particular results, but nothing 
more. For example, if the probabilities that a colliding particle will be deflected upward 
and downward are identical, we cannot now--and never shall be able to--predict in which 
direction the particle will go. Nonetheless, nature makes its choice. This act of choice, 
which is among the most elementary, is according to modern notions a blind one. 
Changes in the evolution of the universe occur only because of the interweaving and play 
of an infinite number of such acts.  

The second situation is the act of will of the human personality. We can study this act 
from outside, just as we study the collision of particles. This is the basis of behavioral 
psychology. If we know the conditions in which a person is placed and some of his 
psychological characteristics, we can make some predictions, also purely probabilistic. 
But when we view this situation from within--as our own free choice (as an act of 
manifesting our personality)--what had appeared unpredictable in principle when 
considered from outside is now seen as free will.  

The nature of the unpredictability in these acts is the same, as is the impossibility of 
watching the system without affecting it; but how greatly they differ in their significance! 
The act of will encompasses an enormous space-time area as compared to the act of the 
scattering of particles. In addition, the act of will may be a creative act, not the blind, 
inert material of cosmic evolution but its direct expression, its moving force. 

 
¾¾THE DIVERGENCE OF TRAJECTORIES 

ALL THE SAME, the human being is extraordinarily small in comparison not only with 
the universe, but with the human race as a whole, and this again inclines us to think of the 
insignificance of the act of individual will and the law of large numbers would seem to 
reinforce us in this thought. We must note that superficially understood and incorrectly 
applied scientific truths very often promote the acceptance of false conceptions. That is 
how things are at present. Relying on the law of large numbers people reason as follows. 
There are 3 billion people on Earth. The destiny of the human race is the result of their 
combined actions. Because the contribution of each person to this sum is equal to one 
three-billionth no one person can hope to significantly affect the course of history, not 
even accidentally. Only general factors which influence the behavior of many people 
simultaneously count. 

In reality this reasoning contains a flagrant error, because the law of large numbers is 
only applicable to an aggregate of independent subsystems. It could be applied to the 
human race if all 3 billion people acted with absolute independence and knew absolutely 
nothing about one another. However, as the human race is a large and strongly 
interconnected system, the acts of some people have very great effects on the acts of 
others. In general such systems possess the characteristic of divergence of trajectories, 
which is to say that small variations in the initial state of the system become increasingly 
larger over time. We call the situations in which the law of divergence of trajectories 
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manifests itself in an unquestionable, obvious way crises. In a crisis situation enormous 
chances in the state of the system depend on minute (on a system scale) factors. In such a 
situation the actions of one person, possibly even a single word spoken by the person, 
may be decisive. We are inclined to consider crisis situations rare, but we know many 
constantly operating factors that multiply the influence of a single person many times 
over. These are the so-called trigger mechanisms. Only a very slight effort is required to 
press the trigger or control button, but the consequences resulting from this action may be 
enormous. It is hardly necessary to say how many such mechanisms there are in human 
society. 

Nonetheless, the idea of the little person, this fig leaf with which we conceal in front of 
others the shame of our cowardice, does not give up without a struggle. Most people, the 
''little person'' says, do not participate in crisis situations and do not have access to 
triggers. 

Many people will perhaps recall the rhyme which ends with the words: 

For want of a battle the kingdom was lost--  

And all for want of a horseshoe nail.  

The rhyme describes a trigger mechanism which goes from a slipshod blacksmith who 
did not have a nail to the defeat of an army. We take this story as humorous, not wishing 
to see it as completely serious. However, our entire lives consist of such multi-stepped 
dependencies. Mathematical investigation of large interconnected systems shows the 
same thing: trajectories diverge. An initially insignificant deviation (the lack of a nail in 
the blacksmith shop) enlarges step by step (the shoe falls off, the horse goes lame, the 
commander is killed, the cavalry are crushed, and the army flees). But we take a skeptical 
attitude toward such long chains because in our everyday life we are almost never able to 
trace them reliably from start to finish. In the first place, each connection between links 
of the chain is probabilistic: a lame horse certainly does not necessarily doom the 
commander. In the second place, following the relationship of events constantly raises 
questions of the type ''What would have happened if . . .?'' It is hard to find two people 
who give the same answers to a series of such questions, but it is impossible to turn the 
clock back and look. Finally, we practically never have the necessary information.  

But that we cannot trace these chains in the opposite direction should not eclipse our 
awareness of their existence when we think about the consequences of our actions. Crisis 
situations are rare not because small factors rarely have major consequences (they do), 
but rather because we are seldom fully aware of the chain of events. We can never 
foresee the results of our actions exactly. The only thing available to us is to establish 
general principles through whose guidance we increase the probability of Good, that is, 
the probability of those consequences which we consider desirable. We should act in 
accordance with these principles, viewing each situation as a crisis situation because the 
importance of each act of our will may be enormous. By always acting in such a way we 
unquestionably make a positive contribution to the cause of Good. Here the law of large 
numbers operates at full strength. 
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¾¾ETHICS AND EVOLUTION 

BUT WHAT IS GOOD? What are the Supreme Good and the Supreme Goal? As we 
have already said, the answer to these questions goes beyond the framework of pure 
knowledge and requires an act of will. But perhaps knowledge will lead us to some 
certain act of will, make it practically inevitable? 

Let us think about the results of following different ethical teachings in the evolving 
universe. It is evident that these results depend mainly on how the goals advanced by the 
teaching correlate with the basic law of evolution. The basic law or plan of evolution, like 
all laws of nature, is probabilistic. It does not prescribe anything unequivocally, but it 
does prohibit some things. No one can act against the laws of nature. Thus, ethical 
teachings which contradict the plan of evolution, that is to say which pose goals that are 
incompatible or even simply alien to it, cannot lead their followers to a positive 
contribution to evolution, which means that they obstruct it and will be erased from the 
memory of the world. Such is the immanent characteristic of development: what 
corresponds to its plan is eternalized in the structures which follow in time while what 
contradicts the plan is overcome and perishes.  

Thus, only those teachings which promote realization of the plan of evolution have a 
chance of success. If we consider the cultural values and principles of social life which 
are generally recognized at the present time from this point of view, we shall see that they 
are all very closely connected with our understanding of the plan of evolution and in fact 
can be deduced from it. This is the common denominator of the ethical teachings which 
have made a constructive contribution to human history.  

But there is still a great distance between this objective and unbiased view of ethical 
principles and the decision to follow them. Really, why should I care about the plan of 
evolution? What does it have to do with me? 

 
¾¾THE WILL TO IMMORTALITY 

A VERY IMPORTANT FACT--that human beings are mortal--now must be considered. 
Awareness of it is the starting point in becoming human. The thought of the inevitability 
of death creates a torturous situation for a rational being and he seeks a way out. The 
protest against death, against the disintegration of one's own personality, is common to all 
people. In the last analysis, this is the source from which all ethical teachings draw the 
volitional component essential to them.  

Traditional religious teachings begin from an unconditional belief in the immortality of 
the soul. In this case the protest against death is used as a force which causes a person to 
accept this teaching; after all, from the very beginning it promises immortality. If 
immortality of the soul is accepted then the stimulus to carry out the moral norms 
imposes itself: eternal bliss for good and eternal torment for bad. Under the powerful 
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influence of science the notions of immortality of the soul and life beyond the grave, 
which were once very concrete and clear, are becoming increasingly abstract and pale, 
and old religious systems are slowly but surely losing their influence. A person raised on 
the ideas of modern science cannot believe in the immortality of the soul in the traditional 
religious formulation no matter how much he may want to; a very simple linguistic 
analysis shows the complete meaninglessness of this concept.  

The will to immortality combined with the picture of the world drawn above can lead him 
to just one goal: to make his own personal contribution to cosmic evolution, to eternalize 
his personality in all subsequent acts of the world drama. In order to be eternal this 
contribution must be constructive. Thus we come to the principle that the Highest Good 
is a constructive contribution to the evolution of the universe. The traditional cultural and 
social values may be largely deduced from this principle. To the extent that they conflict 
with it they should be cast aside as ruthlessly as we suppress animal instincts in the name 
of higher values. 

The human being continues somehow to live in his creations: 

No! All of me will not die! In the cherished lyre my soul  
Will survive my ashes, it will not decay. 
            (PUSHKIN, "I Have Raised a Monument to Myself," 1836) 

What is the soul? In the scientific aspect of this concept it is a form or the organization of 
movement of matter. Is it so important whether this organization is embodied in the 
nerves and muscles, in rock, in letters, or in the way of life of one's descendants? When 
we try to dig down to the very core of our personality, don't we come to the conviction 
that its essence is not a repeating stream of sensations or the regular digestion of food, but 
certain unrepeatable, deeply individual creative acts? However, the physical result of 
these acts may go far beyond the space-time boundaries of our biological body. Thus we 
begin to feel a profound unity with the Cosmos and responsibility for its destiny. This 
feeling is probably the same in all people, but it is expressed differently in various 
religious and philosophical systems. It is this feeling that art teaches which elevates the 
human being to the level of a cosmic phenomenon.  

Thus, the scientific worldview brings us to ethics, which points out the Supreme Values 
and demands that we be responsible for and actively pursue them. Like any ethics it 
includes the act of will, which we have called the will to immortality. If a person cannot 
or does not want to perform this act, then no knowledge, no logic will force him to accept 
the Supreme Values, to become responsible and active. And God save him! The 
Philistine who has firmly resolved to be content with his wretched ideal, who has 
resolved to live as a humble slave of circumstances, will not be elevated by anything and 
will pass from the stage without a trace. The person who does not want immortality will 
not get it. Just as the animal deprived of its instinct for reproduction will not perform its 
animal function, so the human being deprived of the will to immortality will not fulfill his 
or her human function. Fortunately, this case is the exception, not the rule. The will to 
immortality is not the privilege of certain "great'' people, it is a mass characteristic of the 
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human being, a norm of the human personality which serves as the source of moral 
strength and courage.  

How convincing and acceptable will the ethical ideals we have deduced from the 
scientific worldview be for a broad range of people, our contemporaries and descendants? 
Doesn't all this reasoning sound a little too abstract and unfeeling? Is it capable of 
involving, of affecting the emotions'? It is, and this is shown by many examples. The 
ideas of evolution and personal participation in the cosmic process conquer the 
imagination; they give life depth and meaning. But in return they demand bold 
conclusions and a readiness to sacrifice the conventional and adopt the unexpected and 
uncanny if that is where logic inexorably leads.  

It is natural to expect that those who are engaged in science will have a positive attitude 
toward construction of an ethical system on the basis of the scientific worldview. This 
expectation is for the most part borne out. The scientists have many ''fellow travellers'' 
too. But there are also many enemies or, at least, persons who do not wish us well. In 
some circles (especially among the intelligentsia in the humanities) it is fashionable to 
curse scientists for their ''scientism,'' their endeavors to construct all life on a scientific 
basis, surreptitiously substituting science for all other forms of spiritual life. These 
attitudes (which can hardly be called justified) are engendered primarily by fear in the 
face of that unknown future toward which the development of science is inexorably (and 
rapidly!) drawing us. The fear is intensified by misunderstanding, for neither the broad 
public nor the representatives of the intelligentsia in the humanities and arts ordinarily 
understand the essence of modern scientific thinking and the role of science in spiritual 
culture. This problem was set forth brilliantly by C. P. Snow in his 1956 lecture entitled 
"The Two Cultures."[4] Science to the modern person is what fire was to the primitive. 
And just as fire aroused a whole range of feelings in our ancestors (terror, amazement, 
and gratitude), so science today arouses a similar range of feelings. Fire has an attractive 
and enchanting force. The primitive looked at fire and delights and dim premonitions 
earlier unknown rose in his soul. It is the same with science. Science fiction, for example, 
is just like the visions of primitives sitting around a fire. And constructing supreme goals 
and principles on the basis of the scientific picture of the world can be called fire 
worship. These metaphors do not degrade; they honor modern fire worshipers. After all, 
we are very deeply indebted to the imagination of our ancestors who were enchanted by 
the dancing flames of the fire. 

 
¾¾INTEGRATION AND FREEDOM 

THE PROCESS of social integration has never gone on so furiously and openly as it does 
today. Modern science and engineering have put every person in the sphere of influence 
of every other. Modem culture is global. Modern nations are enormous mechanisms 
which have a tendency to regulate the behavior of each citizen with increasing rigidity--to 
define needs, tastes, and opinions and to impose them on people from without. Modern 
people are hounded by the feeling that they are being turned into standardized parts of 
this mechanism. and are ceasing to exist as individuals.  



  

 261

The basic contradiction of social integration--that between the necessity of including the 
human being in the system, in the continuously consolidating whole, and the necessity of 
preserving the individual as a free, creative personality--can be seen today better than 
ever before. Can this contradiction be resolved? Is a society possible which will continue 
to move along the path of integration but at the same time ensure complete freedom for 
development of the personality? Different conceptions of society give different answers.  

The optimistic answer to the question sounds positive. Each successive stage in the 
integration of society will probably involve some external limitations not fundamental 
from the point of view of creative activity. On the other hand, each stage will foster a 
liberation of the nucleus of the personality, which is the source of creativity. Belief in the 
possibility of such a society is equivalent to belief that the impulse implanted by nature in 
the human being has not been exhausted, that the human being is capable of continuing 
the stage of cosmic evolution he has begun. After all, the personal, creative principle is 
the essence of the human being, the fundamental engine of evolution in the age of 
intellect. If it is suppressed by social integration, movement will stop. On the other hand, 
social integration is also essential. Without it the further development of culture and 
increasing human power over nature are impossible; the essence of the new level of 
organization of matter lies in social integration. But why should we suppose that social 
integration and personal freedom are incompatible? After all, integration has been 
successfully carried out at other levels of organization! When cells join into a 
multicellular organism they continue to perform their biological functions-- exchange of 
matter and reproduction by division. The new characteristic, the life of the organism, 
does not appear despite the biological functions of the individual cells but rather thanks to 
them. The creative act of free will is the ''biological'' function of the human individual. In 
the integrated society, therefore, it should be preserved as an inviolable foundation and 
new characteristics must appear only through it and thanks to it. 

If we refuse to believe in the possibility of an organic combination of social integration 
and personal freedom then we must give one of them preference over the other. The 
preference for personal freedom leads to the individualistic conception of society, while 
preference for social integration leads to totalitarian regimes.  

Individualism views society as nothing more than a method of ''peaceful coexistence'' of 
individuals and increasing the personal benefits for each of them. But by itself this idea is 
inadequate to build a healthy society. Pure individualism deprives the life of a person of 
any higher meaning and leads to cynicism and spiritual impoverishment. In fact, 
individualism exists only thanks to an alliance with traditional religious systems --or, to 
put it better, by living as a parasite on them--because they are in principle hostile to 
individualism and permit it only as a weakness. With the collapse of the religious systems 
this parasite reaches enormous size. Individualism becomes a fearsome ulcer eating up 
society and inevitably, as a protest against itself, it gives rise to its negation, 
totalitarianism. 

For totalitarianism, integration is everything and the individual is nothing. Totalitarianism 
constructs a hierarchical state system which is usually headed by one person or a small 
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group of people. An ideological system is also constructed which each citizen is obliged 
to accept as his or her personal worldview. Anyone refusing to do this is subject to 
punishment, which may go as far as physical extermination. The person trapped in 
between the two systems becomes a thoughtless, soulless part in the social machine. The 
person is given only what freedom is necessary to carry out instructions from above. 
Every manifestation of individual activity is viewed as potentially dangerous to the state. 
Personal rights are abolished. 

Striving to preserve and strengthen itself, the totalitarian state uses all means of physical 
and moral influence on people to make them suitable to the state--"totalitarian'' people. 
The fundamental characteristic of the totalitarian person is the presence of certain 
prohibitions he is unable to violate. He may be a scientist, an investigator filled with 
curiosity, but upon approaching certain aspects of life his curiosity suddenly begins to 
evaporate. He may be a brave man, capable of giving his life for his country without a 
thought, but he trembles in fear before his leader. He may consider himself an honest 
man but speak what he knows to be a lie, and not connect this lie with his supposed 
honesty. He may steal, commit treason, and kill in the confidence that ''it is necessary''; he 
will never permit himself to ask if it really is necessary. And he will walk a mile to avoid 
anything that might force him to think about this.  

The totalitarian person is compensated for these tabus, which are imposed on precisely 
what constitutes the highest value of human existence, by the feeling of unity--the feeling 
that he belongs to an enormous aggregate of people who are organized into a single 
whole. The human being has an inherent, internal need for social integration, and 
totalitarianism's strength is that it plays on this need and satisfies it to some extent. The 
strength and danger of totalitarianism are that it stands for social integration, and social 
integration is an objective necessity. 

But the totalitarian state is not the solution to the problem of social integration. It 
achieves wholeness by smoothing out differences among its constituent human units to 
the point where they lose their human essence. It cuts off people's heads and forces the 
stumps to be elated at the unity achieved at such a price. Totalitarianism is a tragically 
clumsy and unsuccessful pseudosolution: it is the abortion of social integration. By 
destroying the individual person it deprives itself of the source of creativity. It is doomed 
to rot and decay. 

While individualism generates totalitarianism, totalitarianism, inversely, generates 
individualism. "Down with the collective!" cries the person raised in totalitarianism who 
has become aware of his slavery. ''Leave me alone! I don't want unity! I don't want 
military might! I don't want a feeling of comradeship! I want to live the way I like! I! I! 
I!" Fearing punishment, however, he only imagines he is shouting this; at most he 
whispers it. His ego, which has grown up under totalitarian conditions, is a wretched, 
half-strangled one. And he becomes a purposeless Philistine with the perspective of a 
chicken. He is not interested in anything except his own self. He does not believe in 
anything and therefore he subordinates himself to everything. This is no longer a 
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totalitarian personality, it is a miserable and cowardly individualist living in a totalitarian 
state.  

Individualism and totalitarianism are two opposites linked in a common chain. There is 
only one way to break this circle: to set as our task conscious social integration with 
preservation and development of creative personal freedom. 

 
¾¾QUESTIONS, QUESTIONS . . . 

ATTEMPTS TO LOOK even farther, as far as imagination permits, produce more 
questions than answers.  

How far will integration of individuals go? There is no doubt that in the future (and 
perhaps not too far in the future) direct exchange of information among the nervous 
systems of individual people (leading to their physical integration) will become possible. 
Obviously the integration of nervous systems must be accompanied by the creation of 
some higher system of control over the unified nerve network. How will it be perceived 
subjectively? Will the modern individual consciousness, for which the supreme system of 
control will be something outside and above the personal, something alien and not 
directly accessible, be preserved unchanged? Or will physical integration give rise to 
qualitatively new, higher forms of consciousness that will form a process that can be 
described as merging the souls of individual people into a single Supreme Soul? The 
second prospect is both more probable and more attractive. It also resolves the problem 
of the contradiction between reason and death. It is difficult to tolerate the thought that 
the human race will always remain an aggregate of individual, short-lived beings who die 
before they are able to see the realization of their plans. The integration of individuals 
will make a new synthetic consciousness which is, in principle. immortal just as the 
human race is, in principle, immortal.  

But will our descendants want physical integration? What will they want in general? And 
what will they want to want? Already today the manipulation of human desires has 
become a phenomenon that cannot be discounted, and what will come in the future when 
the structure and functioning of the brain have been investigated in detail? Will the 
human race tall into the trap of the absolutely stable and, subjectively, absolutely happy 
society which has been described in the works of science fiction writers such as Zamyatin 
and Huxley?  

To avoid falling into such a trap there must be guarantees that no control structure is the 
highest one finally and irreversibly. In other words, there must be guarantees that 
metasystem transitions will always be possible in relation to any system no matter how 
large it may be. Are such guarantees possible? Does consciousness of the necessity of the 
metasystem transition for development give people such guarantees? And is the very 
need for development, the yearning to continue development, ineradicable? We have 
reason to hope that it is. Having conquered the human consciousness, the idea of 
evolution seemingly does not want to go away. If we imagine that the human race will 
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exist forever like a gigantic clock, unchanging and identical, with people (its machinery) 
being replaced as a result of the natural processes of birth and death, we become 
nauseous; this seems equivalent to the immediate annihilation of the human race. But will 
it always seem that way to our descendants? Perhaps now, when we feel that necessity of 
development, we should try to perpetuate this feeling? Perhaps this is our duty to the 
living matter which gave us birth? Suppose we have made such a decision. How can it be 
carried out? 

Now let us pose the question of the pitfalls along the path of development in more 
general form. Ant society is absolutely stable. But that is not because it is poorly 
organized; the individuals which make it up are such that unifying them does not give 
rise to a new characteristic--it does not bring brains into contact (the poor things have 
virtually nothing with which to make contact). Is it possible for the remote descendants of 
the ants or other arthropods to become rational beings? Most likely it is not. It appears 
that the arthropods have entered an evolutionary blind alley, but perhaps we are in one 
too. Perhaps the human being, is unsuitable material for integration and no new forms of 
organization and consciousness based on it will develop. Perhaps life on Earth has 
followed a false course from the very beginning and the animation and spiritualization of 
the Cosmos are destined to be realized by some other forms of life.  

Let us assume that this is not true, that nature has not committed a fatal injustice in 
relation to the Earth. Now, when conscious beings have appeared, what should they do to 
avoid wandering unknowingly into a blind alley? For such a general question a general 
answer may be offered: preserve, even in some miniature, compressed form, the 
maximum number of variations; do not irreversibly cut off any possibilities. If evolution 
is wandering in a labyrinth, then when we come to a point where the corridors intersect 
and we choose the path going to the right we must not forgot that there is also a corridor 
going to the left and that it will be possible to return to this place. We must mark our path 
with ineradicable, phosphorescent dye. This is precisely the function of the science of 
history. But are the linguistic traces which it leaves adequate? Perhaps a conscious 
parallelism is essential in solving all social problems. 

We shall hope that we have not yet made an uncorrectable mistake and that people will 
be able to create new, fantastic (from our present point of view) forms of organization of 
matter, and forms of consciousness. And then the last, but also the most disturbing, 
question arises: can't there exist a connection between the present individual 
consciousness of each human personality and this future superconsciousness, a bridge 
built across time? In other words, isn't a resurrection of the individual personality in some 
form possible all the same? 

Unfortunately, all we know at the present time compels us to answer in the negative. We 
do not see any possibility of this. Neither is there a necessity for it in the process of 
cosmic evolution. Like the apes from which they originated, people are not worth 
resurrection. All that remains after us is what we have created during the time allotted to 
us. 
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But no one can force a person to give up hope. In this case there is some reason to hope, 
because our last question concerns things about which we know very little. We 
understand some things about the chemical and physical processes related to life and we 
also can make our way in questions related to feelings, representations, and knowledge of 
reality. But the consciousness and the will are a riddle to us. We do not know the 
connection here between two aspects: the subjective, inner aspect and the objective, 
external aspect with which science deals. We do not even know how to ask the questions 
whose answers must be sought. Everything here is unclear and mysterious: great 
surprises are possible. 

We have constructed a beautiful and majestic edifice of science. Its fine-laced linguistic 
constructions soar high into the sky. But direct your gaze to the space between the pillars, 
arches, and floors, beyond them, off into the void. Look more carefully, and there in the 
distance, in the black depth, you will see someone's green eyes staring. It is the Secret, 
looking at you.  

 

[1] The figures are taken from G. N. Dobrov's book Nauka o nauke (The Science of 
Science), Kiev, 1966. 

[2] The figures are taken from D. Price's "Little Science, Big Science,'' in the collection 
of artlcles Nauka o nauke (The Science of Science), Moscow. Progress Publishing House, 
1966; original: Columbia University Press, 1963.  

[3] Hero of the novel Twelve Chairs by Ilf and Petrov -- trans. 

[4] C.P. Snow, The Two Cultures and the Scientific Revolution (London: Macmillan, 
1959).  

 
 

 


